Predicting hematoma expansion in acute spontaneous intracerebral hemorrhage: integrating clinical factors with a multitask deep learning model for non-contrast head CT

被引:11
作者
Lee, Hyochul [1 ,2 ]
Lee, Junhyeok [1 ,2 ]
Jang, Joon [3 ]
Hwang, Inpyeong [2 ,4 ,5 ]
Choi, Kyu Sung [2 ,5 ]
Park, Jung Hyun [6 ]
Chung, Jin Wook [2 ,4 ,5 ]
Choi, Seung Hong [1 ,2 ,4 ,5 ,7 ]
机构
[1] Seoul Natl Univ, Coll Med, Interdisciplinary Program Canc Biol, Seoul 03080, South Korea
[2] Seoul Natl Univ Hosp, Dept Radiol, 101 Daehak Ro, Seoul 03080, South Korea
[3] Seoul Natl Univ, Dept Biomed Sci, Seoul 03080, South Korea
[4] Seoul Natl Univ, Coll Med, Dept Radiol, 101 Daehak Ro, Seoul 03080, South Korea
[5] Seoul Natl Univ Hosp, Dept Radiol, Artificial Intelligence Collaborat Network, Seoul 03080, South Korea
[6] Seoul Metropolitan Govt Seoul Natl Univ, Dept Radiol, Boramae Med Ctr, Seoul 07061, South Korea
[7] Inst for Basic Sci Korea, Ctr Nanoparticle Res, Seoul 08826, South Korea
关键词
Acute intracerebral hemorrhage; Deep learning; Hematoma expansion; Computed tomography; Clinical finding; ANGIOGRAPHY SPOT SIGN; PLASMA;
D O I
10.1007/s00234-024-03298-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
PurposeTo predict hematoma growth in intracerebral hemorrhage patients by combining clinical findings with non-contrast CT imaging features analyzed through deep learning.MethodsThree models were developed to predict hematoma expansion (HE) in 572 patients. We utilized multi-task learning for both hematoma segmentation and prediction of expansion: the Image-to-HE model processed hematoma slices, extracting features and computing a normalized DL score for HE prediction. The Clinical-to-HE model utilized multivariate logistic regression on clinical variables. The Integrated-to-HE model combined image-derived and clinical data. Significant clinical variables were selected using forward selection in logistic regression. The two models incorporating clinical variables were statistically validated.ResultsFor hematoma detection, the diagnostic performance of the developed multi-task model was excellent (AUC, 0.99). For expansion prediction, three models were evaluated for predicting HE. The Image-to-HE model achieved an accuracy of 67.3%, sensitivity of 81.0%, specificity of 64.0%, and an AUC of 0.76. The Clinical-to-HE model registered an accuracy of 74.8%, sensitivity of 81.0%, specificity of 73.3%, and an AUC of 0.81. The Integrated-to-HE model, merging both image and clinical data, excelled with an accuracy of 81.3%, sensitivity of 76.2%, specificity of 82.6%, and an AUC of 0.83. The Integrated-to-HE model, aligning closest to the diagonal line and indicating the highest level of calibration, showcases superior performance in predicting HE outcomes among the three models.ConclusionThe integration of clinical findings with non-contrast CT imaging features analyzed through deep learning showed the potential for improving the prediction of HE in acute spontaneous intracerebral hemorrhage patients.
引用
收藏
页码:577 / 587
页数:11
相关论文
共 50 条
[41]   Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study [J].
Chen, Weidao ;
Wu, Jiangfen ;
Wei, Ren ;
Wu, Shuang ;
Xia, Chen ;
Wang, Dawei ;
Liu, Daliang ;
Zheng, Longmei ;
Zou, Tianyu ;
Li, Ruijiang ;
Qi, Xianrong ;
Zhang, Xiaotong .
INSIGHTS INTO IMAGING, 2022, 13 (01)
[42]   Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study [J].
Weidao Chen ;
Jiangfen Wu ;
Ren Wei ;
Shuang Wu ;
Chen Xia ;
Dawei Wang ;
Daliang Liu ;
Longmei Zheng ;
Tianyu Zou ;
Ruijiang Li ;
Xianrong Qi ;
Xiaotong Zhang .
Insights into Imaging, 13
[43]   Assessment of image quality and impact of deep learning-based software in non-contrast head CT scans [J].
Bos, Denise ;
Demircioglu, Aydin ;
Neuhoff, Julia ;
Haubold, Johannes ;
Zensen, Sebastian ;
Opitz, Marcel K. ;
Drews, Marcel A. ;
Li, Yan ;
Styczen, Hanna ;
Forsting, Michael ;
Nassenstein, Kai .
SCIENTIFIC REPORTS, 2024, 14 (01)
[44]   Deep learning model to quantify left atrium volume on routine non-contrast chest CT and predict adverse outcomes [J].
Aquino, Gilberto J. ;
Chamberlin, Jordan ;
Mercer, Megan ;
Kocher, Madison ;
Kabakus, Ismail ;
Akkaya, Selcuk ;
Fiegel, Matthew ;
Brady, Sean ;
Leaphart, Nathan ;
Dippre, Andrew ;
Giovagnoli, Vincent ;
Yacoub, Basel ;
Jacob, Athira ;
Gulsun, Mehmet Akif ;
Sahbaee, Pooyan ;
Sharma, Puneet ;
Waltz, Jeffrey ;
Schoepf, U. Joseph ;
Baruah, Dhiraj ;
Emrich, Tilman ;
Zimmerman, Stefan ;
Field, Michael E. ;
Agha, Ali M. ;
Burt, Jeremy R. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2022, 16 (03) :245-253
[45]   Multi-institutional external validation of automated segmentation models for intracerebral hemorrhage (ICH) and Perihematomal edema (PHE) on Non-Contrast Head CT [J].
Payabvash, Sam ;
Desser, Dmitriy ;
Nawabi, Jawed ;
Abou Karam, Gaby ;
Zeevi, Tal ;
Dierksen, Fiona ;
Qureshi, Adnan I. ;
Sanelli, Pina C. ;
Werring, David J. ;
Malhotra, Ajay ;
De Havenon, Adam ;
Falcone, Guido J. ;
Sheth, Kevin N. .
CEREBROVASCULAR DISEASES, 2023, 52 :71-71
[46]   Hybrid clinical-radiomics model based on fully automatic segmentation for predicting the early expansion of spontaneous intracerebral hemorrhage: A multi-center study [J].
Wang, Menghui ;
Liang, Yi ;
Li, Hui ;
Chen, Jun ;
Fu, Hua ;
Wang, Xiang ;
Xie, Yuanliang .
JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2024, 33 (11)
[47]   Predicting the clinical prognosis of acute ischemic stroke using machine learning: an application of radiomic biomarkers on non-contrast CT after intravascular interventional treatment [J].
Gu, Hongxian ;
Yan, Yuting ;
He, Xiaodong ;
Xu, Yuyun ;
Wei, Yuguo ;
Shao, Yuan .
FRONTIERS IN NEUROINFORMATICS, 2024, 18
[48]   The Clinical Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Predicting Hematoma Expansion and Poor Outcomes in Patients with Acute Intracerebral Hemorrhage [J].
Kim, Yejin ;
Sohn, Jong-Hee ;
Kim, Chulho ;
Park, So Young ;
Lee, Sang-Hwa .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (08)
[49]   Diagnostic Accuracy of Deep Learning for Intracranial Hemorrhage Detection in Non-Contrast Brain CT Scans: A Systematic Review and Meta-Analysis [J].
Karamian, Armin ;
Seifi, Ali .
JOURNAL OF CLINICAL MEDICINE, 2025, 14 (07)
[50]   Association Factors for CT Angiography Spot Sign and Hematoma Growth in Korean Patients with Acute Spontaneous Intracerebral Hemorrhage: A Single-Center Cohort Study [J].
Moon, Byung Hoo ;
Jang, Dong Kyu ;
Han, Young -Min ;
Jang, Kyung-Sool ;
Huh, Ryoong ;
Park, Young Sup ;
Huh, Hoon .
STROKE, 2015, 46