Strain-induced crystallization and phase separation used for fabricating a tough and stiff slide-ring solid polymer electrolyte

被引:44
作者
Hashimoto, Kei [1 ,2 ,3 ]
Shiwaku, Toru [1 ]
Aoki, Hiroyuki [4 ,5 ]
Yokoyama, Hideaki [1 ]
Mayumi, Koichi [1 ,2 ]
Ito, Kohzo [1 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Adv Mat Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[2] Univ Tokyo, Inst Solid State Phys, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778581, Japan
[3] Gifu Univ, Dept Chem & Biomol Sci, Fac Engn, 1-1 Yanagido, Gifu 5011193, Japan
[4] High Energy Accelerator Res Org, Inst Mat Struct Sci, 203-1 Shirakata, Tokai, Ibaraki 3191106, Japan
[5] Japan Atom Energy Agcy, J PARC Ctr, Mat & Life Sci Div, 2-4 Shirakata, Tokai, Ibaraki 3191195, Japan
来源
SCIENCE ADVANCES | 2023年 / 9卷 / 47期
关键词
IONIC-LIQUID; LITHIUM-ION; NETWORK; FRACTURE; TEMPERATURE; SUPERCAPACITORS; CHALLENGES; HYDROGELS;
D O I
10.1126/sciadv.adi8505
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The demand for mechanically robust polymer-based electrolytes is increasing for applications to wearable devices. Young's modulus and breaking energy are essential parameters for describing the mechanical reliability of electrolytes. The former plays a vital role in suppressing the short circuit during charge-discharge, while the latter indicates crack propagation resistance. However, polymer electrolytes with high Young's moduli are generally brittle. In this study, a tough slide-ring solid polymer electrolyte (SR-SPE) breaking through this trade-off between stiffness and toughness is designed on the basis of strain-induced crystallization (SIC) and phase separation. SIC makes the material highly tough (breaking energy, 80 to 100 megajoules per cubic meter). Phase separation in the polymer enhanced stiffness (Young's modulus, 10 to 70 megapascals). The combined effect of phase separation and SIC made SR-SPE tough and stiff, while these mechanisms do not impair ionic conductivity. This SIC strategy could be combined with other toughening mechanisms to design tough polymer gel materials.
引用
收藏
页数:8
相关论文
共 66 条
  • [31] Meyer WH, 1998, ADV MATER, V10, P439, DOI 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO
  • [32] 2-I
  • [33] VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
    Momma, Koichi
    Izumi, Fujio
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2011, 44 : 1272 - 1276
  • [34] A Critical Local Energy Release Rate Criterion for Fatigue Fracture of Elastomers
    Mzabi, Samy
    Berghezan, Daniel
    Roux, Stephane
    Hild, Francois
    Creton, Costantino
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2011, 49 (21) : 1518 - 1524
  • [35] A review of polymer electrolytes: fundamental, approaches and applications
    Ngai, Koh Sing
    Ramesh, S.
    Ramesh, K.
    Juan, Joon Ching
    [J]. IONICS, 2016, 22 (08) : 1259 - 1279
  • [36] High-yield one-pot synthesis of polyrotaxanes with tunable well-defined threading ratios over a wide range
    Noritomi, Takako
    Jiang, Lan
    Yokoyama, Hideaki
    Mayumi, Koichi
    Ito, Kohzo
    [J]. RSC ADVANCES, 2022, 12 (07) : 3796 - 3800
  • [37] 100th Anniversary of Macromolecular Science Viewpoint: Solid Polymer Electrolytes in Cathode Electrodes for Lithium Batteries. Current Challenges and Future Opportunities
    Patel, Shrayesh N.
    [J]. ACS MACRO LETTERS, 2021, 10 (01) : 141 - 153
  • [38] Stretchable Electronics Based on PDMS Substrates
    Qi, Dianpeng
    Zhang, Kuiyuan
    Tian, Gongwei
    Jiang, Bo
    Huang, Yudong
    [J]. ADVANCED MATERIALS, 2021, 33 (06)
  • [39] Investigation of mechanical properties of polyvinyl chloride-polyethylene oxide (PVC-PEO) based polymer electrolytes for lithium polymer cells
    Ramesh, S.
    Winie, Tan
    Arof, A. K.
    [J]. EUROPEAN POLYMER JOURNAL, 2007, 43 (05) : 1963 - 1968
  • [40] Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives
    Ren, Wenhao
    Ding, Chenfeng
    Fu, Xuewei
    Huang, Yun
    [J]. ENERGY STORAGE MATERIALS, 2021, 34 : 515 - 535