Influence of inner wall roughness of supersonic separator on non-equilibrium condensation of CO2 benefiting flue gas decarbonization

被引:9
|
作者
Chen, Jianan [1 ]
Wang, Tongsheng [1 ]
Li, Anna [1 ]
Gao, Yuanyuan [1 ]
Huang, Zhu [1 ]
Jiang, Wenming [2 ]
Xi, Guang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Dept Fluid Machinery & Engn, Xian 710049, Peoples R China
[2] China Univ Petr East China, Coll Pipeline & Civil Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon capture; Wall roughness; Non-equilibrium condensation; Supersonic separator; STEAM CONDENSING FLOW; NATURAL-GAS; NUCLEATION;
D O I
10.1016/j.jclepro.2023.139964
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Supersonic separators are energy efficient and environmental separation device. Recent work has demonstrated the potential of supersonic separators to separate CO2 from flue gas. Because the supersonic flows in the separator is accompanied by shock waves and non-equilibrium condensation, the current cognition level on flow behavior in the separator is low. This work establishes a numerical model to describe the high-speed two-phase flows in the separator and the non-equilibrium condensation of CO2 during carbon capture process, and clarify the influence of inner wall roughness on carbon capture process. The results show that the rapid expansion of gas pushes the thermodynamic system to non-equilibrium state and promotes the spontaneous condensation of CO2. Wall roughness has obvious influence on normal shock wave position, non-equilibrium condensation and normal shock wave intensity. When the roughness height increases by 0.1 mm, the maximum droplet radius in the separator decreases by 17.4%, liquid CO2 fraction decreases by 49.1%, and radial range of liquid phase decreases by 46.3%.
引用
收藏
页数:11
相关论文
共 27 条
  • [21] Numerical simulation of CO2 condensation process from CH4-CO2 binary gas mixture in supersonic nozzles
    Sun, Wenjuan
    Cao, Xuewen
    Yang, Wen
    Jin, Xuetang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 188 : 238 - 249
  • [22] Simulation of post-combustion CO2 capture process by non-equilibrium stage hydrate-based gas separation technology
    Li, Luling
    Fan, Shuanshi
    Chen, Qiuxiong
    Yang, Guang
    Zhao, Jinzhou
    Wei, Na
    Wen, Yonggang
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2018, 79 : 25 - 33
  • [23] CFD modeling on non-equilibrium condensation process of H2S in CH4-H2S mixture expansion through supersonic nozzles
    Sun, Wenjuan
    Cao, Xuewen
    Yang, Wen
    Zhao, Xikuo
    FUEL PROCESSING TECHNOLOGY, 2018, 170 : 53 - 63
  • [24] Carbon capture and high-capacity supercritical fluid processing with supersonic separator: Natural gas with ultra-high CO2 content
    Arinelli, Lara de Oliveira
    de Medeiros, Jose Luiz
    de Melo, Darley Carrijo
    Teixeira, Alexandre Mendonca
    Brigagao, George Victor
    Passarelli, Fabio Menezes
    Grava, Wilson Mantovani
    Araujo, Fella de Queiroz F.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2019, 66 : 265 - 283
  • [25] CO2 Capture by Hybrid Ultramicroporous TIFSIX-3-Ni under Humid Conditions Using Non-Equilibrium Cycling
    Ullah, Saif
    Tan, Kui
    Sensharma, Debobroto
    Kumar, Naveen
    Mukherjee, Soumya
    Bezrukov, Andrey A.
    Li, Jing
    Zaworotko, Michael J.
    Thonhauser, Timo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (35)
  • [26] Modeling polydispersed droplets in non-equilibrium condensing CO2 flows through turbine cascades using moment-based methods for efficient energy utilization
    Petruccelli, Giuseppe
    Dolatabadi, Amir Momeni
    Gronman, Aki
    Turunen-Saaresti, Teemu
    Guardone, Alberto
    APPLIED THERMAL ENGINEERING, 2024, 256
  • [27] Phase equilibrium measurements for clathrate hydrates of flue gas (CO2 + N2 + O2) in the presence of tetra-n-butyl ammonium bromide or tri-n-butylphosphine oxide
    Du, Jianwei
    Wang, Liguang
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2015, 88 : 96 - 100