Decoupled and Reparameterized Compound Attention-Based Light Field Depth Estimation Network

被引:3
作者
Liao, Wan [1 ]
Bai, Xiaoqi [2 ]
Zhang, Qian [1 ]
Cao, Jie [1 ]
Fu, Haoyu [1 ]
Wei, Wei [1 ]
Wang, Bin [1 ]
Yan, Tao [3 ]
机构
[1] Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai 200234, Peoples R China
[2] Educ Inst Yangpu Dist, Shanghai 200092, Peoples R China
[3] Putian Univ, Sch Mech Elect & Informat Engn, Putian 351100, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; Feature extraction; Computer architecture; Cameras; Light fields; Spatial resolution; Data mining; Parameter estimation; Light field depth estimation; decoupling; reparameterization; attention mechanism;
D O I
10.1109/ACCESS.2023.3334640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A light field (LF) camera captures both spatial and angular information of the real world, and the intertwined nature of these dimensions presents a pressing challenge in effectively disentangling meaningful LF information for depth estimation. This paper introduces a feature extraction network based on LF decoupling, which ingeniously separates the LF. Furthermore, given the extensive volume of input data inherent in LF images, a novel reparameterizable Residual-Densely Branched Leaky-ReLU Block(Res-DBLB) architecture was developed to replace conventional residual structures and multibranch architectures and enhance inference efficiency. Incorporating an attention mechanism further refines the network, effectively addressing the computational intensity and time-consuming nature of LF depth estimation, thus furthering the advancement of this technology. Our model was applied to widely used datasets as well as the latest LF datasets, namely HCI and UrbanLF, showing superior performance over six other popular models across four evaluation metrics.
引用
收藏
页码:130119 / 130130
页数:12
相关论文
共 42 条
[11]   Self-Supervised Light Field Depth Estimation Using Epipolar Plane Images [J].
Li, Kunyuan ;
Zhang, Jun ;
Gao, Jun ;
Qi, Meibin .
2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, :731-740
[12]   A Lightweight Depth Estimation Network for Wide-Baseline Light Fields [J].
Li, Yan ;
Wang, Qiong ;
Zhang, Lu ;
Lafruit, Gauthier .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :2288-2300
[13]  
Li Y, 2020, INT CONF ACOUST SPEE, P1998, DOI [10.1109/icassp40776.2020.9053532, 10.1109/ICASSP40776.2020.9053532]
[14]  
Liao W., 2023, J. Shanghai Normal Univ. Natural Sci., V52, P183
[15]   Unsupervised learning of light field depth estimation with spatial and angular consistencies [J].
Lin, Lili ;
Li, Qiujian ;
Gao, Bin ;
Yan, Yuxiang ;
Zhou, Wenhui ;
Kuruoglu, Ercan Engin .
NEUROCOMPUTING, 2022, 501 :113-122
[16]  
Liu Y., 2023, PROC INT JOINT C NEU, P1
[17]   Fast Depth Estimation for Light Field Cameras [J].
Mishiba, Kazu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :4232-4242
[18]   Robust Depth Estimation for Light Field Microscopy [J].
Palmieri, Luca ;
Scrofani, Gabriele ;
Incardona, Nicolo ;
Saavedra, Genaro ;
Martinez-Corral, Manuel ;
Koch, Reinhard .
SENSORS, 2019, 19 (03)
[19]   Zero-Shot Depth Estimation From Light Field Using A Convolutional Neural Network [J].
Peng, Jiayong ;
Xiong, Zhiwei ;
Wang, Yicheng ;
Zhang, Yueyi ;
Liu, Dong .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 :682-696
[20]   Unsupervised Depth Estimation from Light Field Using a Convolutional Neural Network [J].
Peng, Jiayong ;
Xiong, Zhiwei ;
Liu, Dong ;
Chen, Xuejin .
2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, :295-303