DYNAMICAL BEHAVIORS OF VAN DER POL-DUFFING SYSTEMS WITH INDEFINITE DEGREE

被引:6
作者
Chen, Hebai [1 ]
Feng, Zhaosheng [2 ]
Li, Zhijie [1 ]
Wang, Zhaoxia [3 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
[3] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
关键词
Van der Pol-Duffing oscillator; indefinite degree; bifurcation; global; phase portrait; Poincare disc; limit cycle; figure-eight loop; LIENARD EQUATIONS; OSCILLATOR;
D O I
10.3934/dcds.2023104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study dynamical behaviors of van der Pol-Duffing oscillator systems with indefinite degree. Under certain conditions, we show some novel and rich complex dynamics, including abundant nonlinear phenomena such as three limit cycles, figure-eight loop, global phase portraits, and infinitely many heteroclinic bifurcation surfaces.
引用
收藏
页码:281 / 317
页数:37
相关论文
共 19 条
[1]  
Arnold V.I., 1977, Funct. Anal. Appl., V11, P85, DOI [10.1007/BF01081886, DOI 10.1007/BF01081886]
[2]  
Arnold V.I., 1982, Geometric Methods in the Theory of Ordinary Differential Equations
[3]  
Carr J., 1981, Applications of Centre Manifold Theory, DOI DOI 10.1007/978-1-4612-5929-9
[4]  
Chen H., preprint
[5]   GLOBAL PHASE PORTRAITS OF A DEGENERATE BOGDANOV-TAKENS SYSTEM WITH SYMMETRY (II) [J].
Chen, Hebai ;
Chen, Xingwu .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10) :4141-4170
[6]   GLOBAL PHASE PORTRAIT OF A DEGENERATE BOGDANOV-TAKENS SYSTEM WITH SYMMETRY [J].
Chen, Hebai ;
Chen, Xingwu ;
Xie, Jianhua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04) :1273-1293
[7]   Dynamical analysis of a cubic Lienard system with global parameters [J].
Chen, Hebai ;
Chen, Xingwu .
NONLINEARITY, 2015, 28 (10) :3535-3562
[8]  
Chow SN., 1994, NORMAL FORMS BIFURCA, DOI 10.1017/CBO9780511665639
[9]   CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING [J].
DUMORTIER, F ;
ROUSSEAU, C .
NONLINEARITY, 1990, 3 (04) :1015-1039
[10]   Polynomial Lienard equations near infinity [J].
Dumortier, F ;
Herssens, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 153 (01) :1-29