Long-Range and High-Efficiency Plasmon-Assisted Forster Resonance Energy Transfer

被引:6
|
作者
Hamza, Abdullah O. [1 ,2 ,3 ]
Al-Dulaimi, Ali [1 ,2 ]
Bouillard, Jean-Sebastien G. [1 ,2 ]
Adawi, Ali M. [1 ,2 ]
机构
[1] Univ Hull, Dept Phys, Kingston Upon Hull HU6 7RX, England
[2] Univ Hull, GW Gray Ctr Adv Mat, Kingston Upon Hull HU6 7RX, England
[3] Salahaddin Univ Erbil, Coll Sci, Dept Phys, Erbil 44002, Kurdistan, Iraq
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 44期
基金
英国工程与自然科学研究理事会;
关键词
MOLECULAR-ORIENTATION; FRET ENHANCEMENT; FLUORESCENCE; WAVE;
D O I
10.1021/acs.jpcc.3c04281
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of a long-range and efficient F & ouml;rster resonance energy transfer (FRET) process is essential for its application in key enabling optoelectronic and sensing technologies. Via controlling the delocalization of the donor's electric field and Purcell enhancements, we experimentally demonstrate long-range and high-efficiency F & ouml;rster resonance energy transfer using a plasmonic nanogap formed between a silver nanoparticle and an extended silver film. Our measurements show that the FRET range can be extended to over 200 nm while keeping the FRET efficiency over 0.38, achieving an efficiency enhancement factor of similar to 10(8) with respect to a homogeneous environment. Reducing Purcell enhancements by removing the extended silver film increases the FRET efficiency to 0.55, at the expense of the FRET rate. We support our experimental findings with numerical calculations based on three-dimensional finite difference time-domain calculations and treat the donor and acceptor as classical dipoles. Our enhanced FRET range and efficiency structures provide a powerful strategy to develop novel optoelectronic devices and long-range FRET imaging and sensing systems.
引用
收藏
页码:21611 / 21616
页数:6
相关论文
共 50 条
  • [21] Photonic effects on the Forster resonance energy transfer efficiency
    Rabouw, Freddy T.
    den Hartog, Stephan A.
    Senden, Tim
    Meijerink, Andries
    NATURE COMMUNICATIONS, 2014, 5
  • [22] Long-Range Single-Molecule Forster Resonance Energy Transfer between Alexa Dyes in Zero-Mode Waveguides
    Baibakov, Mikhail
    Patra, Satyajit
    Claude, Jean-Benoit
    Wenger, Jerome
    ACS OMEGA, 2020, 5 (12): : 6947 - 6955
  • [23] Tunable and long-range energy transfer efficiency through a graphene nanodisk
    Karanikolas, Vasilios D.
    Marocico, Cristian A.
    Bradley, A. Louise
    PHYSICAL REVIEW B, 2016, 93 (03)
  • [24] Dynamics, Efficiency, and Energy Distribution of Nonlinear Plasmon-Assisted Generation of Hot Carriers
    Demichel, Olivier
    Petit, Marlene
    Viarbitskaya, Sviatlana
    Mejard, Regis
    de Fornel, Frederique
    Hertz, Edouard
    Billard, Franck
    Bouhelier, Alexandre
    Cluzel, Benoit
    ACS PHOTONICS, 2016, 3 (05): : 791 - 795
  • [25] Long-range energy transfer in proteins
    Piazza, Francesco
    Sanejouand, Yves-Henri
    PHYSICAL BIOLOGY, 2009, 6 (04)
  • [26] Long-range energy transfer in DNA
    Baverstock, K.F.
    Cundall, R.B.
    Radiation Physics and Chemistry, 1988, 32 (3 III): : 553 - 556
  • [27] Long-range surface plasmons for high-resolution surface plasmon resonance sensors
    Nenninger, GG
    Tobiska, P
    Homola, J
    Yee, SS
    SENSORS AND ACTUATORS B-CHEMICAL, 2001, 74 (1-3) : 145 - 151
  • [28] Long-range surface plasmon resonance imaging for bioaffinity sensors
    Wark, AW
    Lee, HJ
    Corn, RM
    ANALYTICAL CHEMISTRY, 2005, 77 (13) : 3904 - 3907
  • [29] Can nanophotonics control the Forster resonance energy transfer efficiency?
    Blum, C.
    Zijlstra, N.
    Lagendijk, A.
    Wubs, M.
    Mosk, A. P.
    Subramaniam, V.
    Vos, W. L.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [30] Long-range dipole-dipole interaction and anomalous Forster energy transfer across a hyperbolic metamaterial
    Biehs, S. -A.
    Menon, Vinod M.
    Agarwal, G. S.
    PHYSICAL REVIEW B, 2016, 93 (24)