Long-Range and High-Efficiency Plasmon-Assisted Forster Resonance Energy Transfer

被引:6
|
作者
Hamza, Abdullah O. [1 ,2 ,3 ]
Al-Dulaimi, Ali [1 ,2 ]
Bouillard, Jean-Sebastien G. [1 ,2 ]
Adawi, Ali M. [1 ,2 ]
机构
[1] Univ Hull, Dept Phys, Kingston Upon Hull HU6 7RX, England
[2] Univ Hull, GW Gray Ctr Adv Mat, Kingston Upon Hull HU6 7RX, England
[3] Salahaddin Univ Erbil, Coll Sci, Dept Phys, Erbil 44002, Kurdistan, Iraq
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 44期
基金
英国工程与自然科学研究理事会;
关键词
MOLECULAR-ORIENTATION; FRET ENHANCEMENT; FLUORESCENCE; WAVE;
D O I
10.1021/acs.jpcc.3c04281
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of a long-range and efficient F & ouml;rster resonance energy transfer (FRET) process is essential for its application in key enabling optoelectronic and sensing technologies. Via controlling the delocalization of the donor's electric field and Purcell enhancements, we experimentally demonstrate long-range and high-efficiency F & ouml;rster resonance energy transfer using a plasmonic nanogap formed between a silver nanoparticle and an extended silver film. Our measurements show that the FRET range can be extended to over 200 nm while keeping the FRET efficiency over 0.38, achieving an efficiency enhancement factor of similar to 10(8) with respect to a homogeneous environment. Reducing Purcell enhancements by removing the extended silver film increases the FRET efficiency to 0.55, at the expense of the FRET rate. We support our experimental findings with numerical calculations based on three-dimensional finite difference time-domain calculations and treat the donor and acceptor as classical dipoles. Our enhanced FRET range and efficiency structures provide a powerful strategy to develop novel optoelectronic devices and long-range FRET imaging and sensing systems.
引用
收藏
页码:21611 / 21616
页数:6
相关论文
共 50 条
  • [1] Long-range plasmon-assisted energy transfer over doped graphene
    Velizhanin, Kirill A.
    Shahbazyan, Tigran V.
    PHYSICAL REVIEW B, 2012, 86 (24):
  • [2] Long-Range Plasmon-Assisted Energy Transfer between Fluorescent Emitters
    Bouchet, D.
    Cao, D.
    Carminati, R.
    De Wilde, Y.
    Krachmalnicoff, V.
    PHYSICAL REVIEW LETTERS, 2016, 116 (03)
  • [3] Long-Range Plasmon-Assisted Chiral Interactions in Nanocrystal Assemblies
    Hu, Li
    Liedl, Tim
    Martens, Kevin
    Wang, Zhiming
    Govorov, Alexander O.
    ACS PHOTONICS, 2019, 6 (03) : 749 - 756
  • [4] Plasmon-assisted Forster resonance energy transfer at the single-molecule level in the moderate quenching regime
    Bohlen, J.
    Cuartero-Gonzalez, A.
    Pibiri, E.
    Ruhlandt, D.
    Fernandez-Dominguez, A., I
    Tinnefeld, P.
    Acuna, G. P.
    NANOSCALE, 2019, 11 (16) : 7674 - 7681
  • [5] Plasmon-Assisted Resonance Energy Transfer Involving Electric and Magnetic Coupling
    Jin, Lei
    Liang, Xiongyu
    He, Chengmao
    Wang, Tiejun
    Liang, Kun
    Yu, Li
    ELECTRONICS, 2024, 13 (08)
  • [6] Plasmon-Assisted Energy Transfer in Hybrid Nanosystems
    Glaeske, Mareen
    Juergensen, Sabrina
    Gabrielli, Luca
    Menna, Enzo
    Mancin, Fabrizio
    Gatti, Teresa
    Setaro, Antonio
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2018, 12 (12):
  • [7] Sequential multistep energy transfer: enhancement of efficiency of long-range fluorescence resonance energy transfer
    Kawahara, S
    Uchimaru, T
    Murata, S
    CHEMICAL COMMUNICATIONS, 1999, (06) : 563 - 564
  • [9] Plasmon-assisted Energy Transfer near Metal Nanoparticles
    Shahbazyan, Tigran V.
    Pustovit, Vitaliy N.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [10] ''Golden ruler'': Very long-range resonance energy transfer to surface plasmon acceptors.
    Walczak, WJ
    Xiao, JM
    Kopetz, ES
    Lease, K
    Grau, H
    Lee, SP
    Han, MK
    Knutson, JR
    BIOPHYSICAL JOURNAL, 1997, 72 (02) : TU367 - TU367