Network pharmacology and molecular docking study-based approach to explore mechanism of benzimidazole-based anthelmintics for the treatment of lung cancer

被引:3
作者
Garg, Aakriti [1 ,2 ]
Karhana, Sonali [1 ]
Bano, Aysha [1 ]
Khan, Imran A. [3 ]
Reeta [4 ]
Nidhi [1 ]
Khan, Mohd Ashif [1 ]
机构
[1] Jamia Hamdard, Ctr Translat & Clin Res, Sch Chem & Life Sci, New Delhi, India
[2] Jamia Hamdard, Sch Pharmaceut Educ & Res, Dept Pharmacol, New Delhi, India
[3] Jamia Hamdard, Sch Chem & Life Sci, Dept Chem, New Delhi, India
[4] DRDO, Inst Nucl Med & Allied Sci INMAS, New Delhi, India
来源
CURRENT SCIENCE | 2023年 / 125卷 / 08期
关键词
Benzimidazole-based anthelmintics; lung cancer; molecular docking; molecular dynamics; network pharmacology; BREAST-CANCER; RESISTANCE; PROLIFERATION; MEBENDAZOLE; EXPRESSION; CELLS; EGFR; IDENTIFICATION; PATHWAYS; DYNAMICS;
D O I
10.1080/07391102.2023.2258419
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emerging studies have reported the potential anticancer activity of benzimidazole-based anthelmintics (BBA) against lung cancer (LC). However, mechanism underlying the anticancer activity of BBA is unclear. Therefore, in the current study, network pharmacology and molecular docking-based approach were used to explore the potential molecular mechanism for the treatment of LC. The potential targets for BBA were obtained from multiple databases including SwissTargetPrediction, Drug Bank, Therapeutic Target Database, and Comparative Toxicogenomics Database while LC targets were collected from DisGeNet gene discovery platform, Integrated Genomic Database of NSCLC, Catalogue of Somatic Mutations in Cancer and Online Mendelian Inheritance in Man database. Protein-protein interaction (PPI) diagram of common targets was constructed using STRING online platform. Topological analysis was performed using Cytoscape and gene enrichment analysis was conducted using FunRich software. Highest degree targets were then confirmed using molecular docking and molecular dynamics simulations. The BBA were prioritized according to their S scores, with ricobendazole ranking highest followed by flubendazole, fenbendazole, mebendazole, triclabendazole, albendazole, oxibendazole, parbendazole, thiabendazole and oxfendazole. The potential targets of BBA identified using topological analysis and molecular docking were found to be CCND1 (cyclin D1), EGFR (Epidermal Growth Factor Receptor), ERBB2 (Erb-B2 Receptor Tyrosine Kinase 2/CD340), PTGS2 (Prostaglandin-endoperoxide synthase 2), and SRC (Proto-oncogene tyrosine-protein kinase). Furthermore, molecular dynamics confirmed that CCND1 and EGFR are the potential targets of ricobendazole for the treatment of LC. BBA can be further explored as a therapeutic strategy for the treatment of lung cancer under in vitro and in vivo studies.
引用
收藏
页码:10739 / 10760
页数:4
相关论文
共 50 条
  • [41] Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology
    Yankai Dong
    Bo Tao
    Xing Xue
    Caixia Feng
    Yating Ren
    Hengyu Ma
    Junli Zhang
    Yufang Si
    Sisi Zhang
    Si Liu
    Hui Li
    Jiahao Zhou
    Ge Li
    Zhifei Wang
    Juanping Xie
    Zhongliang Zhu
    BMC Complementary Medicine and Therapies, 21
  • [42] Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology
    Dong, Yankai
    Tao, Bo
    Xue, Xing
    Feng, Caixia
    Ren, Yating
    Ma, Hengyu
    Zhang, Junli
    Si, Yufang
    Zhang, Sisi
    Liu, Si
    Li, Hui
    Zhou, Jiahao
    Li, Ge
    Wang, Zhifei
    Xie, Juanping
    Zhu, Zhongliang
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2021, 21 (01)
  • [43] Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking
    Xie, Chenchen
    Tang, Hao
    Liu, Gang
    Li, Changqing
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [44] Molecular mechanism of action of Liuwei Dihuang pill for the treatment of osteoporosis based on network pharmacology and molecular docking
    Feng, Peng
    Che, Ying
    Chen, De-Qiang
    EUROPEAN JOURNAL OF INTEGRATIVE MEDICINE, 2020, 33
  • [45] Exploring the mechanism of avenanthramide in the treatment of atherosclerosis based on network pharmacology and molecular docking: An observational study
    Wang, Zhigang
    Fang, Longzhi
    Han, Meng
    Liu, Kangzhe
    Zheng, Yuanmei
    Zhan, Yibei
    MEDICINE, 2024, 103 (51) : e40932
  • [46] Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma
    Hu, Minhua
    Yan, Hongsong
    Li, Haishan
    Feng, Yuanlan
    Sun, Weipeng
    Ren, Yueyi
    Ma, Luyao
    Zeng, Wenxing
    Huang, Feng
    Jiang, Ziwei
    Dong, Hang
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [47] Study on the Mechanism of Sanqi in the Treatment of Disseminated Intravascular Coagulation-Based on Network Pharmacology and Molecular Docking Technology
    Yao, Xin
    Zhang, XiuJun
    Ma, ShaoJun
    Zheng, Chen
    Guo, YongFei
    Lu, Wei
    Ye, Kui
    LETTERS IN DRUG DESIGN & DISCOVERY, 2023, 20 (07) : 881 - 893
  • [48] Antioxidant Mechanism of Black Garlic Based on Network Pharmacology and Molecular Docking
    Shang, Yuchen
    Wang, Qiuhong
    Feng, Shuyang
    Du, Zhangbing
    Liang, Shiyou
    Dai, Jing
    Wang, Zhenzhen
    Sha, Ruyi
    Mao, Jianwei
    Zhang, Liming
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2024, 18 (02) : 215 - 224
  • [49] The mechanism of Croci stigma in the treatment of melasma based on network pharmacology and molecular docking
    Yin, Wenxian
    Zhao, Fulan
    He, Yingmeng
    Lai, Hui
    Sun, Mengqi
    JOURNAL OF COSMETIC DERMATOLOGY, 2023, 22 (07) : 2105 - 2114
  • [50] Mechanism of Radix Scutellariae in the treatment of influenza A based on network pharmacology and molecular docking
    Li, Qing
    Liu, Yuntao
    Yang, Min
    Jin, Lianshun
    Wu, Yali
    Tang, Lijuan
    He, Liuyun
    Wu, Dinghong
    Zhang, Zhongde
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (06)