Network pharmacology and molecular docking study-based approach to explore mechanism of benzimidazole-based anthelmintics for the treatment of lung cancer

被引:3
|
作者
Garg, Aakriti [1 ,2 ]
Karhana, Sonali [1 ]
Bano, Aysha [1 ]
Khan, Imran A. [3 ]
Reeta [4 ]
Nidhi [1 ]
Khan, Mohd Ashif [1 ]
机构
[1] Jamia Hamdard, Ctr Translat & Clin Res, Sch Chem & Life Sci, New Delhi, India
[2] Jamia Hamdard, Sch Pharmaceut Educ & Res, Dept Pharmacol, New Delhi, India
[3] Jamia Hamdard, Sch Chem & Life Sci, Dept Chem, New Delhi, India
[4] DRDO, Inst Nucl Med & Allied Sci INMAS, New Delhi, India
来源
CURRENT SCIENCE | 2023年 / 125卷 / 08期
关键词
Benzimidazole-based anthelmintics; lung cancer; molecular docking; molecular dynamics; network pharmacology; BREAST-CANCER; RESISTANCE; PROLIFERATION; MEBENDAZOLE; EXPRESSION; CELLS; EGFR; IDENTIFICATION; PATHWAYS; DYNAMICS;
D O I
10.1080/07391102.2023.2258419
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emerging studies have reported the potential anticancer activity of benzimidazole-based anthelmintics (BBA) against lung cancer (LC). However, mechanism underlying the anticancer activity of BBA is unclear. Therefore, in the current study, network pharmacology and molecular docking-based approach were used to explore the potential molecular mechanism for the treatment of LC. The potential targets for BBA were obtained from multiple databases including SwissTargetPrediction, Drug Bank, Therapeutic Target Database, and Comparative Toxicogenomics Database while LC targets were collected from DisGeNet gene discovery platform, Integrated Genomic Database of NSCLC, Catalogue of Somatic Mutations in Cancer and Online Mendelian Inheritance in Man database. Protein-protein interaction (PPI) diagram of common targets was constructed using STRING online platform. Topological analysis was performed using Cytoscape and gene enrichment analysis was conducted using FunRich software. Highest degree targets were then confirmed using molecular docking and molecular dynamics simulations. The BBA were prioritized according to their S scores, with ricobendazole ranking highest followed by flubendazole, fenbendazole, mebendazole, triclabendazole, albendazole, oxibendazole, parbendazole, thiabendazole and oxfendazole. The potential targets of BBA identified using topological analysis and molecular docking were found to be CCND1 (cyclin D1), EGFR (Epidermal Growth Factor Receptor), ERBB2 (Erb-B2 Receptor Tyrosine Kinase 2/CD340), PTGS2 (Prostaglandin-endoperoxide synthase 2), and SRC (Proto-oncogene tyrosine-protein kinase). Furthermore, molecular dynamics confirmed that CCND1 and EGFR are the potential targets of ricobendazole for the treatment of LC. BBA can be further explored as a therapeutic strategy for the treatment of lung cancer under in vitro and in vivo studies.
引用
收藏
页码:10739 / 10760
页数:4
相关论文
共 50 条
  • [11] The Potential Mechanism of Liujunzi Decoction in the Treatment of Breast Cancer based on Network Pharmacology and Molecular Docking Technology
    Sun, Mei
    Lv, Feng
    Qin, Chunmeng
    Du, Dan
    Li, Wenjun
    Liu, Songqing
    CURRENT PHARMACEUTICAL DESIGN, 2024, 30 (09) : 702 - 726
  • [12] Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology
    Tan, Ye-Ru
    Lu, Yu
    MOLECULAR DIVERSITY, 2023, 27 (03) : 1437 - 1457
  • [13] Molecular Mechanism of Qingzaojiufei Decoction in the Treatment of Pulmonary Fibrosis based on Network Pharmacology and Molecular Docking
    Zhao, Yilong
    Liu, Bohao
    Li, Yixing
    Chen, Zhe
    Zhu, Xingzhuo
    Tao, Runyi
    Wang, Zhiyu
    Wang, Hongyi
    Zhang, Yanpeng
    Yan, Shuguang
    Gong, Qiuyu
    Zhang, Guangjian
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (27) : 2161 - 2176
  • [14] Mechanism of salidroside in the treatment of chronic myeloid leukemia based on the network pharmacology and molecular docking
    Chai, Yihong
    Chen, Feng
    Li, Zijian
    Yang, Panpan
    Zhou, Qi
    Liu, Wenling
    Xi, Yaming
    CLINICAL & TRANSLATIONAL ONCOLOGY, 2023, 25 (02) : 384 - 395
  • [15] The potential mechanism of ursolic acid in the treatment of bladder cancer based on network pharmacology and molecular docking
    Huang, Xiao-Long
    Sun, Yan
    Wen, Peng
    Pan, Jun-Cheng
    He, Wei-Yang
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2024, 52 (03)
  • [16] Mechanism of andrographis paniculata on lung cancer by network pharmacology and molecular docking
    Li, Jiaxin
    Liu, Xiaonan
    Li, Jiaxin
    Han, Dongwei
    Li, Yu
    Ge, Pengling
    TECHNOLOGY AND HEALTH CARE, 2023, 31 (04) : 1407 - 1427
  • [17] Mechanism of icariin for the treatment of osteoarthritis based on network pharmacology and molecular docking method
    Gu, Jin-Yu
    Li, Fa-Jie
    Hou, Cheng-Zhi
    Zhang, Yue
    Bai, Zi-Xing
    Zhang, Qing
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2023, 15 (08): : 5084 - 5084
  • [18] Exploring the Targets and Molecular Mechanisms of Curcumin for the Treatment of Bladder Cancer Based on Network Pharmacology, Molecular Docking and Molecular Dynamics
    Li, Jun
    Feng, Shujie
    Wang, Xiong
    Zhang, Bingmei
    He, Qingmin
    MOLECULAR BIOTECHNOLOGY, 2025, 67 (05) : 2138 - 2159
  • [19] Exploring the Mechanism of White Peony in the Treatment of Lupus Nephritis Based on Network Pharmacology and Molecular Docking
    Cao, Yao
    Wang, Chaoban
    Dong, Liqun
    ARCHIVOS ESPANOLES DE UROLOGIA, 2023, 76 (02): : 123 - 131
  • [20] Based on network pharmacology and molecular docking to predict the mechanism of TMDZ capsule in the treatment of IS
    Yang, Fengjiao
    Gu, Yun
    Yan, Ya
    Wang, Guangming
    MEDICINE, 2023, 102 (30) : E34424