The backward problem for an inhomogeneous time-fractional diffusion-wave equation in an axis-symmetric cylinder

被引:3
作者
Shi, Chengxin [1 ]
Cheng, Hao [1 ]
Geng, Xiaoxiao [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
关键词
Backward problem; Time-fractional diffusion-wave equation; Iterative regularization method; Error estimates; TRANSPORT;
D O I
10.1016/j.camwa.2023.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the backward problem for an inhomogeneous time-fractional diffusion-wave equation in an axis-symmetric cylinder. This problem is ill-posed. In order to solve it stably, we give an iterative regularization method. The Holder error estimates are obtained under the a-priori and a-posteriori parameter choice rules. Numerical examples are presented to verify the effectiveness of our method.
引用
收藏
页码:44 / 60
页数:17
相关论文
共 27 条
[1]   Anomalous transport in laboratory-scale, heterogeneous porous media [J].
Berkowitz, B ;
Scher, H ;
Silliman, SE .
WATER RESOURCES RESEARCH, 2000, 36 (01) :149-158
[2]   Iteration methods on sideways parabolic equations [J].
Deng, Youjun ;
Liu, Zhenhai .
INVERSE PROBLEMS, 2009, 25 (09)
[3]   A Tikhonov regularization method for solving a backward time-space fractional diffusion problem [J].
Feng, Xiaoli ;
Zhao, Meixia ;
Qian, Zhi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
[4]   Backward problems in time for fractional diffusion-wave equation [J].
Floridia, G. ;
Yamamoto, M. .
INVERSE PROBLEMS, 2020, 36 (12)
[5]   Well-posedness for the backward problems in time for general time-fractional diffusion equation [J].
Floridia, Giuseppe ;
Li, Zhiyuan ;
Yamamoto, Masahiro .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (03) :593-610
[6]   Regularization of a backward problem for the inhomogeneous time-fractional wave equation [J].
Huy Tuan, Nguyen ;
Au, Vo ;
Nhat Huynh, Le ;
Zhou, Yong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) :5450-5463
[7]   An inverse problem for a one-dimensional time-fractional diffusion problem [J].
Jin, Bangti ;
Rundell, William .
INVERSE PROBLEMS, 2012, 28 (07)
[8]   A method of fundamental solutions for radially symmetric and axisymmetric backward heat conduction problems [J].
Johansson, B. Tomas ;
Lesnic, Daniel ;
Reeve, Thomas .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (11) :1555-1568
[9]  
Kilbas A.A., 2006, THEORY APPL FRACTION, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[10]  
Kirsch A., 1996, INTRO MATH THEORY IN