Robust Low-Rank Tensor Decomposition with the L2 Criterion

被引:0
作者
Heng, Qiang [1 ]
Chi, Eric C. [2 ]
Liu, Yufeng [3 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Rice Univ, Dept Stat, Houston, TX 77005 USA
[3] Univ North Carolina, Dept Biostat, Dept Genet, Dept Stat & Operat Res, Chapel Hill, NC 27515 USA
基金
美国国家科学基金会;
关键词
Inverse problem; L-2; criterion; Nonconvexity; Robustness; Tucker decomposition; ALGORITHM; TRANSFORMATION; COMPLETION;
D O I
10.1080/00401706.2023.2200541
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The growing prevalence of tensor data, or multiway arrays, in science and engineering applications motivates the need for tensor decompositions that are robust against outliers. In this article, we present a robust Tucker decomposition estimator based on the L-2 criterion, called the Tucker-L2E. Our numerical experiments demonstrate that Tucker-L2E has empirically stronger recovery performance in more challenging high-rank scenarios compared with existing alternatives. The appropriate Tucker-rank can be selected in a data-driven manner with cross-validation or hold-out validation. The practical effectiveness of Tucker-L2E is validated on real data applications in fMRI tensor denoising, PARAFAC analysis of fluorescence data, and feature extraction for classification of corrupted images.
引用
收藏
页码:537 / 552
页数:16
相关论文
共 66 条
[1]   Scalable tensor factorizations for incomplete data [J].
Acar, Evrim ;
Dunlavy, Daniel M. ;
Kolda, Tamara G. ;
Morup, Morten .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 106 (01) :41-56
[2]   A scalable optimization approach for fitting canonical tensor decompositions [J].
Acar, Evrim ;
Dunlavy, Daniel M. ;
Kolda, Tamara G. .
JOURNAL OF CHEMOMETRICS, 2011, 25 (02) :67-86
[3]  
Anandkumar A, 2016, JMLR WORKSH CONF PRO, V51, P268
[4]   Tensor decompositions for feature extraction and classification of high dimensional datasets [J].
Anh Huy Phan ;
Ciehoeki, Andrzej .
IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2010, 1 (01) :37-68
[5]  
[Anonymous], 2015, L BFGS B C
[6]  
[Anonymous], 2016, arXiv
[7]   Efficient MATLAB computations with sparse and factored tensors [J].
Bader, Brett W. ;
Kolda, Tamara G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :205-231
[8]   Algorithm 862: MATLAB tensor classes for fast algorithm prototyping [J].
Bader, Brett W. ;
Kolda, Tamara G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (04) :635-653
[9]  
Baunsgaard D., 1999, INTERNAL REPORT
[10]  
Boyd S., 2011, Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers, DOI DOI 10.1561/2200000016