A HILBERT IRREDUCIBILITY THEOREM FOR ENRIQUES SURFACES

被引:0
作者
Gvirtz-Chen, Damian [1 ,2 ]
Mezzedimi, Giacomo [3 ,4 ]
机构
[1] UCL, Dept Math, 25 Gordon St, London WC1H 0AY, England
[2] Univ Glasgow, Sch Math & S tatist, Univ Pl, Glasgow G12 8QQ, Scotland
[3] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
[4] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
K3; SURFACES; FUNDAMENTAL-GROUPS; RATIONAL-POINTS; CLASSIFICATION; VARIETIES;
D O I
10.1090/tran/8831
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the over-exceptional lattice of a minimal algebraic surface of Kodaira dimension 0. Bounding the rank of this object, we prove that a conjecture by Campana [Ann. Inst. Fourier (Grenoble) 54 (2004), pp. 499-630] and Corvaja-Zannier [Math. Z. 286 (2017), pp. 579-602] holds for Enriques surfaces, as well as K3 surfaces of Picard rank >= 6 apart from a finite list of geometric Picard lattices. Concretely, we prove that such surfaces over finitely generated fields of characteristic 0 satisfy the weak Hilbert Property after a finite field extension of the base field. The degree of the field extension can be uniformly bounded.
引用
收藏
页码:3867 / 3890
页数:24
相关论文
共 44 条
  • [2] Barth W., 2004, ERGEBNISSE MATH IHRE
  • [3] The conjugate dimension of algebraic numbers
    Berry, N
    Dubickas, A
    Elkies, ND
    Poonen, B
    Smyth, C
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 : 237 - 252
  • [4] Bogomolov F. A., 2000, ASIAN J MATH, V4, P351
  • [5] Bogomolov FA, 1998, MATH RES LETT, V5, P623
  • [6] Brandhorst Simon, 2022, ARXIV
  • [7] Brandhorst Simon, 2020, ARXIV
  • [8] Uniform boundedness of p-primary torsion of abelian schemes
    Cadoret, Anna
    Tamagawa, Akio
    [J]. INVENTIONES MATHEMATICAE, 2012, 188 (01) : 83 - 125
  • [9] Campana F, 2004, ANN I FOURIER, V54, P499, DOI 10.5802/aif.2027
  • [10] On the dynamics of automorphisms of complex projective surfaces
    Cantat, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (10): : 901 - 906