Single Hidden Layer Intelligent Approach to Modeling Relative Cooling Power of Rare-Earth-Transition-Metal-Based Refrigerants for Sustainable Magnetic Refrigeration Application

被引:5
作者
Alqahtani, Abdullah [1 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Comp Informat Syst Dept, Dammam 34212, Saudi Arabia
关键词
rare-earth metal; dysprosium; single hidden layer network; relative cooling power; extreme learning machine; ionic radii; applied magnetic field; MAGNETOCALORIC PROPERTIES;
D O I
10.3390/su16041542
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solid-state magnetocaloric-based magnetic refrigeration offers green and sustainable refrigeration with improved efficiency, compactness and environmental friendliness compared with commercialized gas compression refrigeration systems. Relative cooling power (RCP) plays a significant role in the candidature of any magnetic material refrigerants in this application, while the tunable physical and magnetic properties of rare-earth-transition-metal-based materials strengthen the potential of these materials to be used in a cooling system. This work develops single hidden layer (SIL) extreme learning machine intelligent models for predicting the RCP of rare-earth-transition-metal-based magnetocaloric compounds using elemental constituent ionic radii (IR) and maximum magnetic entropy change (EC) descriptors. The developed model based on the sine (SN) activation function with ionic radii (IR) descriptors (SN-SIL-IR) shows superior performance over the sigmoid (SG) activation function-based model, represented as SG-SIL-IR, with performance improvements of 71.86% and 69.55% determined using the mean absolute error (MAE) and root mean square error (RMSE), respectively, upon testing rare-earth-transition-metal-based magnetocaloric compounds. The developed SN-SIL-IR further outperforms the SN-SIL-EC and SG-SIL-EC models which employed maximum magnetic entropy change (EC) descriptors with improvements of 45.74% and 24.79%, respectively, on the basis of MAE performance assessment parameters. Estimates of the developed model agree well with the measured values. The dependence of the RCP on an applied magnetic field for various classes of rare-earth-transition-metal-based magnetocaloric compounds is established using a developed SN-SIL-IR model. The improved precision of the developed SN-SIL-IR model, coupled with ease of its descriptors, will strengthen and facilitate the comprehensive exploration of rare-earth-transition-metal-based magnetocaloric compounds for their practical implementation as magnetic refrigerants for promoting a sustainable system of refrigeration that is known to be efficient and environmentally friendly.
引用
收藏
页数:15
相关论文
共 49 条
[1]   Exploration and quantification of magnetocaloric effect in EuTiO3 perovskite using extreme learning machine intelligent computational method [J].
Agbi, James I. ;
Owolabi, Taoreed O. ;
Abajiigin, Dele D. .
MATERIALS TODAY COMMUNICATIONS, 2023, 37
[2]   Modeling the magnetic cooling efficiency of spinel ferrite magnetocaloric compounds for magnetic refrigeration application using hybrid intelligent computational methods [J].
Alqahtani, Abdullah ;
Saliu, Saibu ;
Owolabi, Taoreed O. ;
Aldhafferi, Nahier ;
Almurayh, Abdullah ;
Oyeneyin, Oluwatoba Emmanuel .
MATERIALS TODAY COMMUNICATIONS, 2022, 33
[3]   Importance of the synthesis and sintering methods on the properties of manganite ceramics: The example of La0.7Ca0.3MnO3 [J].
Ayadi, E. ;
Ammar, S. ;
Nowak, S. ;
Cheikhrouhou-Koubaa, W. ;
Regaieg, Y. ;
Koubaa, M. ;
Monnier, J. ;
Sicard, L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 759 :52-59
[4]   Magnetic refrigeration: Current progress in magnetocaloric properties of perovskite manganite materials [J].
Ayas, Ali Osman ;
Cetin, Selda Kilic ;
Akca, Gonul ;
Akyol, Mustafa ;
Ekicibil, Ahmet .
MATERIALS TODAY COMMUNICATIONS, 2023, 35
[5]   Influence of La3+ site substitution on the structural, magnetic and magnetocaloric properties of ZnFe2-xLaxO4 (x=0.00, 0.001, 0.005 and 0.01) spinel zinc ferrites [J].
Bahhar, S. ;
Lemziouka, H. ;
Boutahar, A. ;
Bioud, H. ;
Lassri, H. ;
Hlil, E. K. .
CHEMICAL PHYSICS LETTERS, 2019, 716 :186-191
[6]   Ensemble of extreme learning machines for multivariate calibration of near-infrared spectroscopy [J].
Chen, Hui ;
Tan, Chao ;
Lin, Zan .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2020, 229
[7]   Correlation between structural and transport properties of electron beam irradiated PrMnO3 compounds [J].
Christopher, Benedict ;
Rao, Ashok ;
Nagaraja, B. S. ;
Prasad, K. Shyam ;
Okram, G. S. ;
Sanjeev, Ganesh ;
Petwal, Vikash Chandra ;
Verma, Vijay Pal ;
Dwivedi, Jishnu ;
Poornesh, P. .
SOLID STATE COMMUNICATIONS, 2018, 270 :30-37
[8]   Magnetocaloric prospects of mutual substitutions of rare-earth elements in pseudobinary Tb1-xHoxNi2 compositions (x=0.25-0.75) [J].
Cwik, J. ;
Koshkid'ko, Y. ;
Malecka, M. ;
Weise, B. ;
Krautz, M. ;
Mikhailova, A. ;
Kolchugina, N. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 886
[9]   Optoelectronic performance and artificial neural networks (ANNs) modeling of n-InSe/p-Si solar cell [J].
Darwish, A. A. A. ;
Hanafy, T. A. ;
Attia, A. A. ;
Habashy, D. M. ;
El-Bakry, M. Y. ;
El-Nahass, M. M. .
SUPERLATTICES AND MICROSTRUCTURES, 2015, 83 :299-309
[10]   Direct and inverse magnetocaloric effects in the antiferromagnetic rare earth (RE) rich RE6Ni2.25Al0.75 (RE = Dy, Ho and Er) compounds [J].
Gu, Yuming ;
Wang, Xin ;
Li, Shuo ;
Ying, Jiayu ;
Zhang, Yikun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960