Phase structure of charged AdS black holes surrounded by exotic fluid with modified Chaplygin equation of state

被引:14
作者
Sekhmani, Y. [1 ,2 ]
Rayimbaev, J. [3 ,4 ,5 ,6 ]
Luciano, G. G. [7 ]
Myrzakulov, R. [1 ,2 ]
Gogoi, D. J. [8 ,9 ]
机构
[1] Ratbay Myrzakulov Eurasian Int Ctr Theoret Phys, Astana 010009, Kazakhstan
[2] LN Gumilyov Eurasian Natl Univ, Astana 010008, Kazakhstan
[3] New Uzbekistan Univ, Movarounnahr Str 1, Tashkent 100007, Uzbekistan
[4] Cent Asian Univ, Tashkent 111221, Uzbekistan
[5] Tashkent Univ Appl Sci, Gavhar Str 1, Tashkent 100149, Uzbekistan
[6] Natl Res Univ TIIAME, Inst Fundamental & Appl Res, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
[7] Univ Lleida, Dept Chem Phys Environm & Soil Sci, Escola Politecn Super, Ave Jaume 2 69, Lleida 25001, Spain
[8] Moran Coll, Dept Phys, Charaideo 785670, Assam, India
[9] Dibrugarh Univ, Ctr Atmospher Studies, Theoret Phys Div, Dibrugarh 786004, Assam, India
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 03期
关键词
DARK ENERGY; THERMODYNAMIC GEOMETRY; METRIC GEOMETRY; GAS; QUINTESSENCE; MODEL; ANTI;
D O I
10.1140/epjc/s10052-024-12597-w
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
By considering the concept of the modified Chaplygin gas (MCG) as a single fluid model unifying dark energy and dark matter, we construct a static, spherically charged black hole (BH) solution in the framework of General Relativity. The P-V criticality of the charged anti-de Sitter (AdS) BH with a surrounding MCG is explored in the context of the extended phase space, where the negative cosmological constant operates as a thermodynamical pressure. This critical behavior shows that the small/large BH phase transition is analogous to the van der Waals liquid/gas phase transition. Accordingly, along the P-V phase spaces, we derive the BH equations of state and then numerically evaluate the corresponding critical quantities. Similarly, critical exponents are identified, along with outcomes demonstrating the scaling behavior of thermodynamic quantities near criticality to a universal class. The use of geometrothermodynamic (GT) tools finally offers a new perspective on the discovery of the critical phase transition point. At this stage, we apply a class of GT tools, such as Weinhold, Ruppeiner, HPEM, and Quevedo classes I and II. The findings are therefore non-trivial, as each GT class metric captures at least either the physical limitation point or the phase transition critical point. Overall, this paper provides a detailed study of the critical behavior of the charged AdS BH with surrounding MCG.
引用
收藏
页数:24
相关论文
共 121 条
  • [1] Abbott B.P., 2016, Phys. Rev. Lett., V116, DOI [10.1103/PhysRevLett.116.061102.1602.03837, 10.1103/PhysRevLett.116.061102, DOI 10.1103/PHYSREVLETT.116.061102]
  • [2] Growth of fluctuations in Chaplygin gas cosmologies: A nonlinear Jeans scale for unified dark matter
    Abdullah, Abdelrahman
    El-Zant, Amr A.
    Ellithi, Ali
    [J]. PHYSICAL REVIEW D, 2022, 106 (08)
  • [3] Abramowitz I., 1965, Handbook of Mathematical Functions
  • [4] Planck 2018 results: VIII. Gravitational lensing
    Aghanim, N.
    Akrami, Y.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Challinor, A.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Cuttaia, F.
    de Bernardis, P.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Fernandez-Cobos, R.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 641 (641)
  • [5] First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole
    Akiyama, Kazunori
    Alberdi, Antxon
    Alef, Walter
    Asada, Keiichi
    Azulay, Rebecca
    Baczko, Anne-Kathrin
    Ball, David
    Balokovic, Mislav
    Barrett, John
    Bintley, Dan
    Blackburn, Lindy
    Boland, Wilfred
    Bouman, Katherine L.
    Bower, Geoffrey C.
    Bremer, Michael
    Brinkerink, Christiaan D.
    Brissenden, Roger
    Britzen, Silke
    Broderick, Avery E.
    Broguiere, Dominique
    Bronzwaer, Thomas
    Byun, Do-Young
    Carlstrom, John E.
    Chael, Andrew
    Chan, Chi-kwan
    Chatterjee, Shami
    Chatterjee, Koushik
    Chen, Ming-Tang
    Chen, Yongjun
    Cho, Ilje
    Christian, Pierre
    Conway, John E.
    Cordes, James M.
    Crew, Geoffrey B.
    Cui, Yuzhu
    Davelaar, Jordy
    De Laurentis, Mariafelicia
    Deane, Roger
    Dempsey, Jessica
    Desvignes, Gregory
    Dexter, Jason
    Doeleman, Sheperd S.
    Eatough, Ralph P.
    Falcke, Heino
    Fish, Vincent L.
    Fomalont, Ed
    Fraga-Encinas, Raquel
    Freeman, William T.
    Friberg, Per
    Fromm, Christian M.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2019, 875 (01)
  • [6] Thermodynamics of Rotating Black Holes and Black Rings: Phase Transitions and Thermodynamic Volume
    Altamirano, Natacha
    Kubiznak, David
    Mann, Robert B.
    Sherkatghanad, Zeinab
    [J]. GALAXIES, 2014, 2 (01): : 89 - 159
  • [7] WMAP and the generalized Chaplygin gas
    Amendola, L
    Finelli, F
    Burigana, C
    Carturan, D
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2003, (07): : 71 - 84
  • [8] Extending the generalized Chaplygin gas model by using geometrothermodynamics
    Aviles, Alejandro
    Bastarrachea-Almodovar, Aztlan
    Campuzano, Lorena
    Quevedo, Hernando
    [J]. PHYSICAL REVIEW D, 2012, 86 (06):
  • [9] Regular black holes with a nonlinear electrodynamics source
    Balart, Leonardo
    Vagenas, Elias C.
    [J]. PHYSICAL REVIEW D, 2014, 90 (12):
  • [10] 4 LAWS OF BLACK HOLE MECHANICS
    BARDEEN, JM
    CARTER, B
    HAWKING, SW
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) : 161 - 170