Twinning Engineering of Platinum/Iridium Nanonets as Turing-Type Catalysts for Efficient Water Splitting

被引:34
作者
Gu, Jialun [1 ,2 ]
Li, Lanxi [2 ,3 ]
Yang, Qi [4 ]
Tian, Fubo [5 ]
Zhao, Wei [6 ]
Xie, Youneng [1 ,2 ]
Yu, Jinli [4 ]
Zhang, An [4 ]
Zhang, Lei [1 ,2 ]
Li, Hongkun [2 ,3 ]
Zhong, Jing [2 ,3 ]
Jiang, Jiali [1 ,2 ]
Wang, Yanju [1 ,2 ]
Liu, Jiahua [2 ,3 ]
Lu, Jian [1 ,2 ,3 ,7 ,8 ]
机构
[1] City Univ Hong Kong, Dept Mech Engn, Hong Kong 999077, Peoples R China
[2] City Univ Hong Kong, Hong Kong Branch, Natl Precious Met Mat Engn Res Ctr, Hong Kong 999077, Peoples R China
[3] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong 999077, Peoples R China
[4] City Univ Hong Kong, Dept Chem, Hong Kong 999077, Peoples R China
[5] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[6] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[7] CityU Shenzhen Futian Res Inst, Shenzhen 518000, Peoples R China
[8] City Univ Hong Kong, Ctr Adv Struct Mat, Greater Bay Joint Div, Shenyang Natl Lab Mat Sci,Shenzhen Res Inst, Shenzhen 518000, Peoples R China
关键词
EVOLUTION;
D O I
10.1021/jacs.3c12419
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA<middle dot>cm(-2) and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.
引用
收藏
页码:5355 / 5365
页数:11
相关论文
共 39 条
[1]   Zebrafish Leopard gene as a component of the putative reaction-diffusion system [J].
Asai, R ;
Taguchi, E ;
Kume, Y ;
Saito, M ;
Kondo, S .
MECHANISMS OF DEVELOPMENT, 1999, 89 (1-2) :87-92
[2]   Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution [J].
Cao, Linlin ;
Luo, Qiquan ;
Liu, Wei ;
Lin, Yue ;
Liu, Xiaokang ;
Cao, Yuanjie ;
Zhang, Wei ;
Wu, Yuen ;
Yang, Jinlong ;
Yao, Tao ;
Wei, Shiqiang .
NATURE CATALYSIS, 2019, 2 (02) :134-141
[3]   EXPERIMENTAL-EVIDENCE OF A SUSTAINED STANDING TURING-TYPE NONEQUILIBRIUM CHEMICAL-PATTERN [J].
CASTETS, V ;
DULOS, E ;
BOISSONADE, J ;
DEKEPPER, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2953-2956
[4]   Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications [J].
Chen, Ye ;
Fan, Zhanxi ;
Zhang, Zhicheng ;
Niu, Wenxin ;
Li, Cuiling ;
Yang, Nailiang ;
Chen, Bo ;
Zhang, Hua .
CHEMICAL REVIEWS, 2018, 118 (13) :6409-6455
[5]   Evolution of nanoporosity in dealloying [J].
Erlebacher, J ;
Aziz, MJ ;
Karma, A ;
Dimitrov, N ;
Sieradzki, K .
NATURE, 2001, 410 (6827) :450-453
[6]   Nanoscale Turing patterns in a bismuth monolayer [J].
Fuseya, Yuki ;
Katsuno, Hiroyasu ;
Behnia, Kamran ;
Kapitulnik, Aharon .
NATURE PHYSICS, 2021, 17 (09) :1031-+
[7]   Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction [J].
Gu, Jialun ;
Li, Lanxi ;
Xie, Youneng ;
Chen, Bo ;
Tian, Fubo ;
Wang, Yanju ;
Zhong, Jing ;
Shen, Junda ;
Lu, Jian .
NATURE COMMUNICATIONS, 2023, 14 (01)
[8]   Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production [J].
He, Yongmin ;
Liu, Liren ;
Zhu, Chao ;
Guo, Shasha ;
Golani, Prafful ;
Koo, Bonhyeong ;
Tang, Pengyi ;
Zhao, Zhiqiang ;
Xu, Manzhang ;
Yu, Peng ;
Zhou, Xin ;
Gao, Caitian ;
Wang, Xuewen ;
Shi, Zude ;
Zheng, Lu ;
Yang, Jiefu ;
Shin, Byungha ;
Arbiol, Jordi ;
Duan, Huigao ;
Du, Yonghua ;
Heggen, Marc ;
Dunin-Borkowski, Rafal E. ;
Guo, Wanlin ;
Wang, Qi Jie ;
Zhang, Zhuhua ;
Liu, Zheng .
NATURE CATALYSIS, 2022, 5 (03) :212-221
[9]   Steam-created grain boundaries for methane C-H activation in palladium catalysts [J].
Huang, Weixin ;
Johnston-Peck, Aaron C. ;
Wolter, Trenton ;
Yang, Wei-Chang D. ;
Xu, Lang ;
Oh, Jinwon ;
Reeves, Benjamin A. ;
Zhou, Chengshuang ;
Holtz, Megan E. ;
Herzing, Andrew A. ;
Lindenberg, Aaron M. ;
Mavrikakis, Manos ;
Cargnello, Matteo .
SCIENCE, 2021, 373 (6562) :1518-+
[10]   A Self-Supported High-Entropy Metallic Glass with a Nanosponge Architecture for Efficient Hydrogen Evolution under Alkaline and Acidic Conditions [J].
Jia, Zhe ;
Nomoto, Keita ;
Wang, Qing ;
Kong, Charlie ;
Sun, Ligang ;
Zhang, Lai-Chang ;
Liang, Shun-Xing ;
Lu, Jian ;
Kruzic, Jamie J. .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (38)