Well-posedness of mild solutions to the drift-diffusion and the vorticity equations in amalgam spaces

被引:0
作者
Suguro, Takeshi [1 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
Well-posedness; Drift -diffusion equation; Keller-Segel system; Amalgam spaces; Vorticity equation; NAVIER-STOKES EQUATIONS; GLOBAL-SOLUTIONS; CAUCHY-PROBLEM; L-P; SYSTEM; LP; EXISTENCE; OPERATORS; BESOV; FLOW;
D O I
10.1016/j.jmaa.2022.126843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the drift-diffusion and the vorticity equations. Both equations involve the Poisson equation and a nonlocal effect of the Green's function influences the solution to the problem. In this paper, we study the well-posedness of the drift-diffusion and the vorticity equations by using amalgam spaces of Lebesgue spaces. Moreover, we show the unconditional uniqueness of mild solutions to the drift-diffusion equation in amalgam spaces. (c) 2022 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:17
相关论文
共 40 条