Well-posedness of mild solutions to the drift-diffusion and the vorticity equations in amalgam spaces

被引:1
作者
Suguro, Takeshi [1 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
Well-posedness; Drift -diffusion equation; Keller-Segel system; Amalgam spaces; Vorticity equation; NAVIER-STOKES EQUATIONS; GLOBAL-SOLUTIONS; CAUCHY-PROBLEM; L-P; SYSTEM; LP; EXISTENCE; OPERATORS; BESOV; FLOW;
D O I
10.1016/j.jmaa.2022.126843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the drift-diffusion and the vorticity equations. Both equations involve the Poisson equation and a nonlocal effect of the Green's function influences the solution to the problem. In this paper, we study the well-posedness of the drift-diffusion and the vorticity equations by using amalgam spaces of Lebesgue spaces. Moreover, we show the unconditional uniqueness of mild solutions to the drift-diffusion equation in amalgam spaces. (c) 2022 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:17
相关论文
共 40 条
[1]  
[Anonymous], 2004, Milan J. Math.
[2]  
[Anonymous], 2003, DIFFERENTIAL INTEGRA
[3]  
[Anonymous], 2002, SAMPL THEORY SIGNAL
[4]   GLOBAL-SOLUTIONS OF 2-DIMENSIONAL NAVIER-STOKES AND EULER EQUATIONS [J].
BENARTZI, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :329-358
[5]  
Bertrandias J.P., 1978, Ann. Inst. Fourier, V28, P53
[6]  
BILER P, 1995, STUD MATH, V114, P181
[7]   Global regular and singular solutions for a model of gravitating particles [J].
Biler, P ;
Cannone, M ;
Guerra, IA ;
Karch, G .
MATHEMATISCHE ANNALEN, 2004, 330 (04) :693-708
[8]  
Bradshaw Z, 2022, Arxiv, DOI arXiv:2207.04298
[9]   LOCAL ENERGY SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN WIENER AMALGAM SPACESK [J].
Bradshaw, Zachary ;
Tsai, Tai-Peng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (02) :1993-2026
[10]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304