Reinforced Adaptation Network for Partial Domain Adaptation

被引:6
|
作者
Wu, Keyu [1 ]
Wu, Min [1 ]
Chen, Zhenghua [2 ]
Jin, Ruibing [1 ]
Cui, Wei [1 ]
Cao, Zhiguang [1 ]
Li, Xiaoli [2 ]
机构
[1] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
[2] ASTAR, Inst Infocomm Res, 138632, Singapore, Singapore
关键词
Adaptation models; Reinforcement learning; Knowledge transfer; Training; Data models; Task analysis; Minimization; Deep reinforcement learning; partial domain adaptation; domain adaptation; transfer learning;
D O I
10.1109/TCSVT.2022.3223950
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Domain adaptation enables generalized learning in new environments by transferring knowledge from label-rich source domains to label-scarce target domains. As a more realistic extension, partial domain adaptation (PDA) relaxes the assumption of fully shared label space, and instead deals with the scenario where the target label space is a subset of the source label space. In this paper, we propose a Reinforced Adaptation Network (RAN) to address the challenging PDA problem. Specifically, a deep reinforcement learning model is proposed to learn source data selection policies. Meanwhile, a domain adaptation model is presented to simultaneously determine rewards and learn domain-invariant feature representations. By combining reinforcement learning and domain adaptation techniques, the proposed network alleviates negative transfer by automatically filtering out less relevant source data and promotes positive transfer by minimizing the distribution discrepancy across domains. Experiments on three benchmark datasets demonstrate that RAN consistently outperforms seventeen existing state-of-the-art methods by a large margin.
引用
收藏
页码:2370 / 2380
页数:11
相关论文
共 50 条
  • [31] Domain Adversarial Reinforcement Learning for Partial Domain Adaptation
    Chen, Jin
    Wu, Xinxiao
    Duan, Lixin
    Gao, Shenghua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) : 539 - 553
  • [32] Addressing the Overfitting in Partial Domain Adaptation With Self-Training and Contrastive Learning
    He, Chunmei
    Li, Xiuguang
    Xia, Yue
    Tang, Jing
    Yang, Jie
    Ye, Zhengchun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1532 - 1545
  • [33] Unsupervised Domain Adaptation for Nonintrusive Load Monitoring Via Adversarial and Joint Adaptation Network
    Liu, Yinyan
    Zhong, Li
    Qiu, Jing
    Lu, Junda
    Wang, Wei
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (01) : 266 - 277
  • [34] Learning to Discover Knowledge: A Weakly-Supervised Partial Domain Adaptation Approach
    Lan, Mengcheng
    Meng, Min
    Yu, Jun
    Wu, Jigang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4090 - 4103
  • [35] Communicational and Computational Efficient Federated Domain Adaptation
    Kang, Hua
    Li, Zhiyang
    Zhang, Qian
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3678 - 3689
  • [36] Guide Subspace Learning for Unsupervised Domain Adaptation
    Zhang, Lei
    Fu, Jingru
    Wang, Shanshan
    Zhang, David
    Dong, Zhaoyang
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (09) : 3374 - 3388
  • [37] Transferable Feature Selection for Unsupervised Domain Adaptation
    Yan, Yuguang
    Wu, Hanrui
    Ye, Yuzhong
    Bi, Chaoyang
    Lu, Min
    Liu, Dapeng
    Wu, Qingyao
    Ng, Michael K.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5536 - 5551
  • [38] Unsupervised Domain Adaptation of Object Detectors: A Survey
    Oza, Poojan
    Sindagi, Vishwanath A.
    Vibashan, V. S.
    Patel, Vishal M.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (06) : 4018 - 4040
  • [39] Weighted Correlation Embedding Learning for Domain Adaptation
    Lu, Yuwu
    Zhu, Qi
    Zhang, Bob
    Lai, Zhihui
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5303 - 5316
  • [40] Hyperspectral Image Classification Based on Domain Adversarial Broad Adaptation Network
    Wang, Haoyu
    Cheng, Yuhu
    Chen, C. L. Philip
    Wang, Xuesong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60