Selective Oxidation of Methane to Methanol via In Situ H2O2 Synthesis

被引:11
作者
Ni, Fenglou [1 ]
Richards, Thomas [1 ]
Smith, Louise R. [1 ]
Morgan, David J. [1 ,2 ]
Davies, Thomas E. [1 ]
Lewis, Richard J. [1 ]
Hutchings, Graham J. [1 ]
机构
[1] Cardiff Univ, Sch Chem, Cardiff Catalysis Inst, Max Planck Cardiff Ctr Fundamentals Heterogeneous, Cardiff CF10 3AT, Wales
[2] Harwell XPS, Res Complex Harwell RCaH, Didcot OX11 0FA, England
来源
ACS ORGANIC & INORGANIC AU | 2023年 / 3卷 / 04期
关键词
methane oxidation; hydrogen peroxide; green chemistry; gold; palladium; HYDROGEN-PEROXIDE; CATALYSTS; PALLADIUM; PD; H-2; COLLOIDS; ACID; O-2;
D O I
10.1021/acsorginorgau.3c00001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The selective oxidation of methane to methanol, using H2O2 generated in situ from the elements, has been investigated using a series of ZSM-5-supported AuPd catalysts of varying elemental composition, prepared via a deposition precipitation protocol. The alloying of Pd with Au was found to offer significantly improved efficacy, compared to that observed over monometallic analogues. Complementary studies into catalytic performance toward the direct synthesis and subsequent degradation of H2O2, under idealized conditions, indicate that methane oxidation efficacy is not directly related to H2O2 production rates, and it is considered that the known ability of Au to promote the release of reactive oxygen species is the underlying cause for the improved performance of the bimetallic catalysts.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 50 条
[21]   On the Nature of Selective Palladium-Based Nanoparticles on Nitrogen-Doped Carbon Nanotubes for the Direct Synthesis of H2O2 [J].
Abate, S. ;
Freni, M. ;
Arrigo, R. ;
Schuster, M. E. ;
Perathoner, S. ;
Centi, G. .
CHEMCATCHEM, 2013, 5 (07) :1899-1905
[22]   Dynamics of Palladium on Nanocarbon in the Direct Synthesis of H2O2 [J].
Arrigo, Rosa ;
Schuster, Manfred E. ;
Abate, Salvatore ;
Wrabetz, Sabine ;
Amakawa, Kazuhiko ;
Teschner, Detre ;
Freni, Maria ;
Centi, Gabriele ;
Perathoner, Siglinda ;
Haevecker, Michael ;
Schloegl, Robert .
CHEMSUSCHEM, 2014, 7 (01) :179-194
[23]   Selective photocatalytic oxidation of methane to methanol by enhancing H2O2 utilization over Au-Pd/In2O3 [J].
Zhou, Qiang ;
Wang, Xinyu ;
Xing, Tao ;
Wang, Mingqing ;
Wu, Mingbo ;
Wu, Wenting .
JOURNAL OF CATALYSIS, 2024, 429
[24]   Bronsted-Evans-Polanyi Relations for H2O2 Synthesis on Gold Surfaces [J].
Wang, Yao-guang ;
Wang, Jian-guo .
CATALYSIS LETTERS, 2012, 142 (05) :601-607
[25]   Towards selective catalytic oxidations using in situ generated H2O2 [J].
O'Callaghan, Niamh ;
Sullivan, James A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 146 :258-266
[26]   H2O2 synthesis by selective oxidation of H2 over Pd-Au bimetallic nano colloid catalyst under addition of NaBr and H3PO4 [J].
Ishihara, Tatsumi ;
Nakashima, Ryota ;
Ooishi, Yuuki ;
Hagiwara, Hidehisa ;
Matsuka, Maki ;
Ida, Shintaro .
CATALYSIS TODAY, 2015, 248 :35-39
[27]   Route of glycerol conversion and product generation via TiO2-induced photocatalytic oxidation in the presence of H2O2 [J].
Jedsukontorn, Trin ;
Meeyoo, Vissanu ;
Saito, Nagahiro ;
Hunsom, Mali .
CHEMICAL ENGINEERING JOURNAL, 2015, 281 :252-264
[28]   Heterogeneous consecutive reaction kinetics of direct oxidation of H2 to H2O2: Effect and regulation of confined mass transfer [J].
Cao, Jian ;
Jiang, Guancong ;
Ye, Nannan ;
Qin, Yao ;
Ji, Xiaoyan ;
Feng, Xin ;
Zhu, Jiahua ;
Zhu, Yudan ;
Xie, Wenlong ;
Lu, Xiaohua .
CHEMICAL ENGINEERING JOURNAL, 2023, 455
[29]   Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation [J].
Hirajima, Tsuyoshi ;
Miki, Hajime ;
Suyantara, Gde Pandhe Wisnu ;
Matsuoka, Hidekazu ;
Elmandy, Ahmed Mohamed ;
Sasaki, Keiko ;
Imaizumi, Yuji ;
Kuroiwa, Shigeto .
MINERALS ENGINEERING, 2017, 100 :83-92
[30]   Iridium single-atoms induced in situ H2O2 formation boosting the hydrothermal oxidation of methane to methanol with molecular O2 [J].
Xie, Mingyu ;
Chen, Xiyan ;
Ye, Yu-xin ;
Chu, Yanchang ;
Cai, Chao ;
Zhang, Wei ;
Chen, De-Li ;
Liu, Xiaohao ;
Yang, Le .
JOURNAL OF CATALYSIS, 2025, 450