Bacterial Nanocellulose from Symbiotic Culture of Bacteria and Yeast Kombucha Prepared with Lemongrass Tea and Sucrose: Optimization and Characterization

被引:3
作者
Aditiawati, Pingkan [1 ]
Taufik, Intan [1 ]
Alexis, Julio Jonathan Gilbert [1 ]
Dungani, Rudi [1 ]
机构
[1] Inst Teknol Bandung, Sch Life Sci & Technol, Bandung 40132, Indonesia
关键词
Bacterial cellulose; Biomaterials; Lemongrass kombucha; Optimization; Nanocellulose; GLUCONACETOBACTER-XYLINUS; CELLULOSE PRODUCTION; ACETOBACTER-XYLINUM; FERMENTATION; CRYSTALLINITY; ANTIOXIDANT;
D O I
10.15376/biores.18.2.3178-3197
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Bacterial nanocellulose (BNC) can be produced using a variety of substrates as fermentation medium for use in various biomaterial applications. This study aimed to optimize the production of and characterize the BNC derived from lemongrass leaves (L-BNC) obtained by symbiotic culture of bacteria and yeast (SCOBY) kombucha. The lemongrass leaves (10, 15, and 20 g/L) and sugar (30, 50, and 70 g/L) were incubated for 14 d at 30 degrees C. The optimal treatment was used to ferment kombucha for 21 days at 30 degrees C, with initial SCOBY inoculum of 3% w/v and kombucha of 10% v/v for the resulting L-BNC. The L-BNC was characterized using scanning electron microscopy-energy dispersive X-ray (SEM-EDX) spectroscopy, Fourier-transform Infrared spectroscopy (FT-IR), and X-ray diffraction analysis (XRD). The optimal parameters of the lemongrass kombucha fermentation production process were lemongrass content 10 g/L and sugar content 30 g/L with the incubation period of two weeks for 56.8 g/L of SCOBY production. The SEM analysis of L-BNC revealed a three-dimensional fibrous extremely fine network of randomly arranged nanofibrils with diameter of 163 +/- 34 nm and hydrogen bonds present in L-BNC fibril units. Meanwhile, XRD results showed a crystallinity of 67.2%.
引用
收藏
页码:3178 / 3197
页数:20
相关论文
共 55 条
[1]   Isolation and characterisation of locally isolated Gluconacetobacter xylinus BCZM sp with nanocellulose producing potentials [J].
Abba, Mustapha ;
Abdullahi, Mohammed ;
Nor, Muhamad Hanif Md ;
Chong, Chun Shiong ;
Ibrahim, Zaharah .
IET NANOBIOTECHNOLOGY, 2018, 12 (01) :52-56
[2]  
Abel M., 2020, Agronomy Research, V18, P1603, DOI [10.15159/ar.20.140, 10.15159/AR.20.140]
[3]  
Akshya Sharma Akshya Sharma, 2017, Hayati Journal of Biosciences, V24, P176, DOI [10.1016/j.hjb.2017.11.001, 10.1016/j.hjb.2017.11.001]
[4]   Synthetic biology strategies for improving microbial synthesis of "green" biopolymers [J].
Anderson, Lisa A. ;
Islam, M. Ahsanul ;
Prather, Kristala L. J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (14) :5053-5061
[5]   Opportunities of Bacterial Cellulose to Treat Epithelial Tissues [J].
Anton-Sales, Irene ;
Beckmann, Uwe ;
Laromaine, Anna ;
Roig, Anna ;
Kralisch, Dana .
CURRENT DRUG TARGETS, 2019, 20 (08) :808-822
[6]   Production and Characterization of a Novel Yeast Extracellular Invertase Activity Towards Improved Dibenzothiophene Biodesulfurization [J].
Arez, Bruno F. ;
Alves, Luis ;
Paixao, Susana M. .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 174 (06) :2048-2057
[7]   Optimized culture conditions for bacterial cellulose production byAcetobacter senegalensisMA1 [J].
Aswini, K. ;
Gopal, N. O. ;
Uthandi, Sivakumar .
BMC BIOTECHNOLOGY, 2020, 20 (01)
[8]   Spectrophotometric total reducing sugars assay based on cupric reduction [J].
Baskan, Keyser Sozgen ;
Tutem, Esma ;
Akyuz, Esin ;
Ozen, Seda ;
Apak, Resat .
TALANTA, 2016, 147 :162-168
[9]  
Cordovana M., 2019, New Microbes and New Infections, V30, P100546, DOI [10.1016/j.nmni.2019.100546, 10.1016/j.nmni.2019.100546]
[10]   Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources [J].
Costa, Andrea F. S. ;
Almeida, Fabiola C. G. ;
Vinhas, Gloria M. ;
Sarubbo, Leonie A. .
FRONTIERS IN MICROBIOLOGY, 2017, 8