A cranial implant for stabilizing whole-cell patch-clamp recordings in behaving rodents

被引:0
作者
Dacre, Joshua [1 ,2 ]
Rivera, Michelle Sanchez [2 ]
Schiemann, Julia J. [1 ,2 ]
Currie, Stephen [1 ,2 ]
Ammer, Julian J. [1 ,2 ,4 ,5 ]
Duguid, Ian [1 ,2 ,3 ,6 ]
机构
[1] Univ Edinburgh, Ctr Discovery Brain Sci, Patrick Wild Ctr, Edinburgh Med Sch Biomed Sci, Edinburgh EH8 9XD, Scotland
[2] Univ Edinburgh, Patrick Wild Ctr, Edinburgh Med Sch Biomed Sci, Edinburgh EH8 9XD, Scotland
[3] Univ Edinburgh, Simons Initiat Developing Brain, Edinburgh EH8 9XD, Scotland
[4] Saarland Univ, Ctr Integrat Physiol & Mol Med, Homburg, Germany
[5] Univ Freiburg, Fac Biol, Optophysiol, D-79100 Freiburg, Germany
[6] Univ Edinburgh, Ctr Discovery Brain Sci, Edinburgh Med Sch Biomed Sci, Hugh Robson Bldg,George Sq, Edinburgh EH8 9XD, Scotland
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
IN-VIVO; MOTION ARTIFACTS; AWAKE; RESOLUTION; MEMBRANE; RESPONSES; BRAIN;
D O I
10.1016/j.jneumeth.2023.109827
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: In vivo patch-clamp recording techniques provide access to the sub-and suprathreshold membrane potential dynamics of individual neurons during behavior. However, maintaining recording stability throughout behavior is a significant challenge, and while methods for head restraint are commonly used to enhance stability, behaviorally related brain movement relative to the skull can severely impact the success rate and duration of whole-cell patch-clamp recordings. New method: We developed a low-cost, biocompatible, and 3D-printable cranial implant capable of locally stabilizing brain movement, while permitting equivalent access to the brain when compared to a conventional craniotomy. Results: Experiments in head-restrained behaving mice demonstrate that the cranial implant can reliably reduce the amplitude and speed of brain displacements, significantly improving the success rate of recordings across repeated bouts of motor behavior. Comparison with existing method(s): Our solution offers an improvement on currently available strategies for brain stabilization. Due to its small size, the implant can be retrofitted to most in vivo electrophysiology recording setups, providing a low cost, easily implementable solution for increasing intracellular recording stability in vivo. Conclusions: By facilitating stable whole-cell patch-clamp recordings in vivo, biocompatible 3D printed implants should accelerate the investigation of single neuron computations underlying behavior.
引用
收藏
页数:9
相关论文
共 40 条
[11]   Real-time 3D movement correction for two-photon imaging in behaving animals [J].
Griffiths, Victoria A. ;
Valera, Antoine M. ;
Lau, Joanna Y. N. ;
Ros, Hana ;
Younts, Thomas J. ;
Marin, Boris ;
Baragli, Chiara ;
Coyle, Diccon ;
Evans, Geoffrey J. ;
Konstantinou, George ;
Koimtzis, Theo ;
Nadella, K. M. Naga Srinivas ;
Punde, Sameer A. ;
Kirkby, Paul A. ;
Bianco, Isaac H. ;
Silver, R. Angus .
NATURE METHODS, 2020, 17 (07) :741-+
[12]   Cortex commands the performance of skilled movement [J].
Guo, Jian-Zhong ;
Graves, Austin R. ;
Guo, Wendy W. ;
Zheng, Jihong ;
Lee, Allen ;
Rodriguez-Gonzalez, Juan ;
Li, Nuo ;
Macklin, John J. ;
Phillips, James W. ;
Mensh, Brett D. ;
Branson, Kristin ;
Hantman, Adam W. .
ELIFE, 2015, 4
[13]   IMPROVED PATCH-CLAMP TECHNIQUES FOR HIGH-RESOLUTION CURRENT RECORDING FROM CELLS AND CELL-FREE MEMBRANE PATCHES [J].
HAMILL, OP ;
MARTY, A ;
NEHER, E ;
SAKMANN, B ;
SIGWORTH, FJ .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1981, 391 (02) :85-100
[14]   Intracellular dynamics of hippocampal place cells during virtual navigation [J].
Harvey, Christopher D. ;
Collman, Forrest ;
Dombeck, Daniel A. ;
Tank, David W. .
NATURE, 2009, 461 (7266) :941-U196
[15]   Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window [J].
Holtmaat, Anthony ;
Bonhoeffer, Tobias ;
Chow, David K. ;
Chuckowree, Jyoti ;
De Paola, Vincenzo ;
Hofer, Sonja B. ;
Huebener, Mark ;
Keck, Tara ;
Knott, Graham ;
Lee, Wei-Chung A. ;
Mostany, Ricardo ;
Mrsic-Flogel, Tom D. ;
Nedivi, Elly ;
Portera-Cailliau, Carlos ;
Svoboda, Karel ;
Trachtenberg, Joshua T. ;
Wilbrecht, Linda .
NATURE PROTOCOLS, 2009, 4 (08) :1128-1144
[16]   Optimized protocol for in vivo whole-cell recordings in head-fixed, awake behaving mice [J].
Jordan, Rebecca .
STAR PROTOCOLS, 2021, 2 (01)
[17]   SIMA: Python']Python software for analysis of dynamic fluorescence imaging data [J].
Kaifosh, Patrick ;
Zaremba, Jeffrey D. ;
Danielson, Nathan B. ;
Losonczy, Attila .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[18]   Reinforcing operandum: rapid and reliable learning of skilled forelimb movements by head-fixed rodents [J].
Kimura, Rie ;
Saiki, Akiko ;
Fujiwara-Tsukamoto, Yoko ;
Ohkubo, Fuki ;
Kitamura, Kazuo ;
Matsuzaki, Masanori ;
Sakai, Yutaka ;
Isomura, Yoshikazu .
JOURNAL OF NEUROPHYSIOLOGY, 2012, 108 (06) :1781-1792
[19]   Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents [J].
Kislin, Mikhail ;
Mugantseva, Ekaterina ;
Molotkov, Dmitry ;
Kulesskaya, Natalia ;
Khirug, Stanislav ;
Kirilkin, Ilya ;
Pryazhnikov, Evgeny ;
Kolikova, Julia ;
Toptunov, Dmytro ;
Yuryev, Mikhail ;
Giniatullin, Rashid ;
Voikar, Vootele ;
Rivera, Claudio ;
Rauvala, Heikki ;
Khiroug, Leonard .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (88)
[20]   Adaptive Movement Compensation for In Vivo Imaging of Fast Cellular Dynamics within a Moving Tissue [J].
Laffray, Sophie ;
Pages, Stephane ;
Dufour, Hugues ;
De Koninck, Paul ;
De Koninck, Yves ;
Cote, Daniel .
PLOS ONE, 2011, 6 (05)