The effect of thermal non-equilibrium on kinetic nucleation

被引:4
|
作者
Kiefer, S. [1 ,2 ,3 ,4 ]
Gobrecht, D. [1 ,5 ]
Decin, L. [1 ]
Helling, Ch. [3 ,4 ]
机构
[1] Katholieke Univ Leuven, Inst Astron, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] Univ St Andrews, Ctr Exoplanet Sci, St Andrews KY169SS, Scotland
[3] Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria
[4] Graz Univ Technol, Fak Math Phys & Geodasie, Petersgasse 16, A-8010 Graz, Austria
[5] Univ Gothenburg, Dept Chem & Mol Biol, S-40530 Gothenburg, Sweden
关键词
astrochemistry; methods; analytical; planets and satellites; atmospheres; stars; AGB and post-AGB; COAGULATION-FRAGMENTATION EQUATIONS; CIRCUMSTELLAR DUST SHELLS; LONG-PERIOD VARIABLES; EXTRA-SOLAR PLANETS; BROWN DWARFS; STELLAR WINDS; PHOTOSPHERIC ENVIRONMENT; TRANSMISSION SPECTRUM; ASYMPTOTIC-BEHAVIOR; MINERAL FORMATION;
D O I
10.1051/0004-6361/202244685
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Nucleation is considered to be the first step in dust and cloud formation in the atmospheres of asymptotic giant branch (AGB) stars, exoplanets, and brown dwarfs. In these environments dust and cloud particles grow to macroscopic sizes when gas phase species condense onto cloud condensation nuclei (CCNs). Understanding the formation processes of CCNs and dust in AGB stars is important because the species that formed in their outflows enrich the interstellar medium. Although widely used, the validity of chemical and thermal equilibrium conditions is debatable in some of these highly dynamical astrophysical environments.Aims. We aim to derive a kinetic nucleation model that includes the effects of thermal non-equilibrium by adopting different temperatures for nucleating species, and to quantify the impact of thermal non-equilibrium on kinetic nucleation.Methods. Forward and backward rate coefficients are derived as part of a collisional kinetic nucleation theory ansatz. The endother-mic backward rates are derived from the law of mass action in thermal non-equilibrium. We consider elastic collisions as thermal equilibrium drivers.Results. For homogeneous TiO2 nucleation and a gas temperature of 1250 K, we find that differences in the kinetic cluster temperatures as small as 20 K increase the formation of larger TiO2 clusters by over an order of magnitude. Conversely, an increase in cluster temperature of around 20 K at gas temperatures of 1000 K can reduce the formation of a larger TiO2 cluster by over an order of magnitude.Conclusions. Our results confirm and quantify the prediction of previous thermal non-equilibrium studies. Small thermal non-equilibria can cause a significant change in the synthesis of larger clusters. Therefore, it is important to use kinetic nucleation models that include thermal non-equilibrium to describe the formation of clusters in environments where even small thermal non-equilibria can be present.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Crystallographic symmetry effect on the nucleation in non-equilibrium aggregation pattern
    Zhao, Shanrong
    Qiu, Zhihui
    Yang, Mingling
    Meng, Jie
    Fang, Min
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (22) : 5355 - 5361
  • [2] Non-equilibrium Bubble Nucleation in Underwater Explosion
    Petrov, Nikita
    Schmidt, Alexander
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1046 - 1049
  • [3] Is Soret equilibrium a non-equilibrium effect?
    Wuerger, Alois
    COMPTES RENDUS MECANIQUE, 2013, 341 (4-5): : 438 - 448
  • [4] Monomer size effect in inelastic collisional dynamics of non-equilibrium soot nucleation
    Morozov, Alexander N.
    Mebel, Alexander M.
    Frenklach, Michael
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (23):
  • [5] Thermal non-equilibrium effect on stabilities of falling liquid films
    Wang, BX
    Zhang, JT
    Peng, XF
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (15) : 2863 - 2868
  • [6] Effect of thermodynamic parameters and geometry on thermal non-equilibrium flows
    Sinha A.
    Gopalakrishnan S.
    Multiphase Science and Technology, 2021, 33 (01) : 1 - 17
  • [7] Non-equilibrium Quasi-Chemical Nucleation Model
    Gorbachev, Yuriy E.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 171 (02) : 288 - 344
  • [8] Non-Equilibrium Quasi-Chemical Nucleation Model
    Gorbachev, Yu. E.
    31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS (RGD31), 2019, 2132
  • [9] Non-equilibrium Quasi-Chemical Nucleation Model
    Yuriy E. Gorbachev
    Journal of Statistical Physics, 2018, 171 : 288 - 344
  • [10] KINETIC AND HYDRODYNAMIC THEORIES OF NON-EQUILIBRIUM FLUCTUATIONS
    MARCHETTI, MC
    DUFTY, JW
    PHYSICA A, 1983, 118 (1-3): : 205 - 216