Context Attention: Human Motion Prediction Using Context Information and Deep Learning Attention Models

被引:0
作者
Laplaza, Javier [1 ]
Moreno-Noguer, Francesc [1 ]
Sanfeliu, Alberto [1 ]
机构
[1] Univ Politecn Cataluna, Catalonia, Spain
来源
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1 | 2023年 / 589卷
关键词
Machine learning; Human-robot collaboration;
D O I
10.1007/978-3-031-21065-5_9
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This work proposes a human motion prediction model for handover operations. The model uses a multi-headed attention architecture to process the human skeleton data together with contextual data from the operation. This contextual data consists on the position of the robot's End Effector (REE). The model input is a sequence of 5 s skeleton position and it outputs the predicted 2.5 future seconds position. We provide results of the human upper body and the human right hand or Human End Effector (HEE). The attention deep learning based model has been trained and evaluated with a dataset created using human volunteers and an anthropomorphic robot, simulating handover operations where the robot is the giver and the human the receiver. For each operation, the human skeleton is obtained using OpenPose with an Intel RealSense D435i camera set inside the robot's head. The results show a great improvement of the human's right hand prediction and 3D body compared with other methods.
引用
收藏
页码:102 / 112
页数:11
相关论文
共 19 条
  • [11] Jain A, 2016, Arxiv, DOI arXiv:1511.05298
  • [12] Lang MR, 2017, Arxiv, DOI arXiv:1707.02745
  • [13] Attention deep learning based model for predicting the 3D Human Body Pose using the Robot Human Handover Phases
    Laplaza, Javier
    Pumarola, Albert
    Moreno-Noguer, Francesc
    Sanfeliu, Alberto
    [J]. 2021 30TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2021, : 161 - 166
  • [14] Mao W, 2020, Arxiv, DOI arXiv:2007.11755
  • [15] On human motion prediction using recurrent neural networks
    Martinez, Julieta
    Black, Michael J.
    Romero, Javier
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4674 - 4683
  • [16] Parastegari S, 2017, IEEE INT C INT ROBOT, P3597, DOI 10.1109/IROS.2017.8206205
  • [17] Petrovich M. J., 2021, arXiv
  • [18] Vaswani A, 2023, Arxiv, DOI [arXiv:1706.03762, DOI 10.48550/ARXIV.1706.03762]
  • [19] Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications
    Villani, Valeria
    Pini, Fabio
    Leali, Francesco
    Secchi, Cristian
    [J]. MECHATRONICS, 2018, 55 : 248 - 266