Multistage Activation of Anthracite Coal-Based Activated Carbon for High-Performance Supercapacitor Applications

被引:15
|
作者
Song, Guanrong [1 ]
Romero, Carlos [1 ]
Lowe, Tom [2 ]
Driscoll, Greg [2 ]
Kreglow, Boyd [2 ]
Schobert, Harold [2 ]
Baltrusaitis, Jonas [3 ]
Yao, Zheng [1 ]
机构
[1] Lehigh Univ, Energy Res Ctr, Bethlehem, PA 18015 USA
[2] Blaschak Anthracite Corp, Mahanoy City, PA 17948 USA
[3] Lehigh Univ, Dept Chem & Biomol Engn, Bethlehem, PA 18015 USA
关键词
HIERARCHICAL POROUS CARBON; SURFACE-AREA; ELECTRODE MATERIAL; RICE HUSK; PORE-SIZE; CAPACITANCE; KOH; PITCH;
D O I
10.1021/acs.energyfuels.2c03487
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An anthracitic coal-derived activated porous carbon is proposed as a promising carbon electrode material for supercapacitor (SC) applications. The specific capacitance of this activated carbon SC electrode is related to the characteristics, such as specific surface area, pore size distribution, wettability, and conductivity. In the present work, a series of anthracite-based activated carbons (ABAC) were prepared via a multistage activation process and used as electrode materials for SCs. The multistage activation experiment was developed by exploring different activation temperatures, precursor/activating agent mass ratios, and process treating environments. The electrochemical performance of ABACs was evaluated in a three-electrode testing system. Multiple electrolytes were utilized, such as 1 M sulfuric acid (H2SO4) and 1 and 6 M potassium hydroxide (KOH) solutions. An optimum ABAC electrode was obtained, characterized by its largest wettability and superior conductivity, and achieved excellent electrochemical performance. The three-electrode system exhibited a specific capacitance of 288.52 and 260.30 F/g at 0.5 A/g in the 1 M H2SO4 and 6 M KOH electrolytes, respectively. It was found that moderate multistage activation temperatures are beneficial for the electrolyte uptake which enhances the specific capacitance. The high content of the oxygen functional groups on the activated carbon surface greatly improved its specific capacitance due to the increase in wettability. In the 1 M H2SO4 electrolyte, the working electrode exhibited better performance than in 1 M KOH because the ion diameter in the acidic electrolyte was more suitable for pore diffusion. The concentrated KOH electrolyte leads to an increase in specific capacitance due to increased ions being adsorbed by a certain number of the hydrophilic pores. Moreover, the specific capacitance of the optimum ABAC sample remained at 95.4% of the initial value after 1000 galvanostatic charge-discharge tests at 0.5 A/g, which is superior to the performance of SC grade commercial carbon.
引用
收藏
页码:1327 / 1343
页数:17
相关论文
共 50 条
  • [1] High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials
    Dong, Duo
    Zhang, Yongsheng
    Xiao, Yi
    Wang, Tao
    Wang, Jiawei
    Romero, Carlos E.
    Pan, Wei-ping
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 580 : 77 - 87
  • [2] Coal-based graphitized activated carbon for solar energy powered supercapacitor IoT applications
    Bora, Mousumi
    Sarmah, Debashis
    Benoy, Santhi Maria
    Hazarika, Abhishek
    Rajbongshi, Akhil
    Saikia, Binoy K.
    ENERGY CONVERSION AND MANAGEMENT, 2024, 319
  • [3] Hierarchical porous carbon derived from coal-based carbon foam for high-performance supercapacitors
    Yang, Nuannuan
    Ji, Lei
    Fu, Haichao
    Shen, Yanfeng
    Wang, Meijun
    Liu, Jinghai
    Chang, Liping
    Lv, Yongkang
    CHINESE CHEMICAL LETTERS, 2022, 33 (08) : 3961 - 3967
  • [4] Biomass derived activated carbon-based high-performance electrodes for supercapacitor applications
    T. Manimekala
    R. Sivasubramanian
    S. Karthikeyan
    Gnanaprakash Dharmalingam
    Journal of Porous Materials, 2023, 30 : 289 - 301
  • [5] Biomass derived activated carbon-based high-performance electrodes for supercapacitor applications
    Manimekala, T.
    Sivasubramanian, R.
    Karthikeyan, S.
    Dharmalingam, Gnanaprakash
    JOURNAL OF POROUS MATERIALS, 2023, 30 (01) : 289 - 301
  • [6] High-Performance Supercapacitor Based on the NaOH Activated D-Glucose Derived Carbon
    Wu, Chao
    Xu, Jiang
    Ding, Jianning
    Yuan, Ningyi
    Yan, Pengtao
    Zhang, Ruijun
    Liu, Huihan
    NANO, 2016, 11 (07)
  • [7] High Cr(VI) adsorption performance of coal-based activated carbon in aqueous solution
    Zhou, Hualei
    Zhu, Qiongqiong
    Huang, Donghua
    ADVANCES IN APPLIED SCIENCE AND INDUSTRIAL TECHNOLOGY, PTS 1 AND 2, 2013, 798-799 : 1123 - 1127
  • [8] Preparation and performance of coal-based activated carbon based on an orthogonal experimental study
    Zhao, Can
    Ge, Lichao
    Mai, Longhui
    Chen, Simo
    Li, Qian
    Yao, Lei
    Li, Dongyang
    Wang, Yang
    Xu, Chang
    ENERGY, 2023, 274
  • [9] Synthesis and Characterization of Activated Carbon from Corncob for High-Performance Electrode Materials for Supercapacitor Applications
    Baskar, Gokulapriya
    Marimuthu, Selvapandiyan
    JOURNAL OF ELECTRONIC MATERIALS, 2025, : 3898 - 3909
  • [10] Preparation of Cobalt/Coal-Based Activated Carbon Composites with Synergistic Electrochemical Performance
    Zhu, Junsheng
    Zhang, Xu
    Zhang, Shuangquan
    Wang, Dianlong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (05): : 3991 - 4000