Poles of finite-dimensional representations of Yangians

被引:4
作者
Gautam, Sachin [1 ]
Wendlandt, Curtis [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Primary; 17B37; Secondary; 81R10; QUANTUM AFFINE ALGEBRAS; TENSOR-PRODUCTS; SPECTRA; MODULES; COPRODUCT; SYSTEMS; PBW;
D O I
10.1007/s00029-022-00813-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g be a finite-dimensional simple Lie algebra over C, and let Y-h(g) be the Yangian of g. In this paper, we study the sets of poles of the rational currents defining the action of Y-h(g) on an arbitrary finite-dimensional vector space V. Using a weak, rational version of Frenkel and Hernandez' Baxter polynomiality, we obtain a uniform description of these sets in terms of the Drinfeld polynomials encoding the composition factors of V and the inverse of the q-Cartan matrix of g. We then apply this description to obtain a concrete set of sufficient conditions for the cyclicity and simplicity of the tensor product of any two irreducible representations, and to classify the finite-dimensional irreducible representations of the Yangian double.
引用
收藏
页数:68
相关论文
共 58 条
[1]   Finite-dimensional representations of quantum affine algebras [J].
Akasaka, T ;
Kashiwara, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1997, 33 (05) :839-867
[2]  
Appel A, 2020, TRANSFORM GROUPS, V25, P945, DOI 10.1007/s00031-019-09543-6
[3]  
Appel A, 2022, Arxiv, DOI arXiv:2206.14857
[4]   Finite-dimensional representations of quantum affine algebras at roots of unity [J].
Beck, J ;
Kac, VG .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :391-423
[5]  
Bourbaki Nicolas., 1975, LIE GROUPS LIE ALGEB, DOI DOI 10.1007/978-3-540-89394-3
[6]  
CHARI V, 1991, J REINE ANGEW MATH, V417, P87
[7]   Yangians, integrable quantum systems and Dorey's rule [J].
Chari, V ;
Pressley, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (02) :265-302
[8]   QUANTUM AFFINE ALGEBRAS [J].
CHARI, V ;
PRESSLEY, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :261-283
[9]  
Chari V, 2002, INT MATH RES NOTICES, V2002, P357
[10]   Yangians: Their representations and characters [J].
Chari, V ;
Pressley, A .
ACTA APPLICANDAE MATHEMATICAE, 1996, 44 (1-2) :39-58