Enhancing Carrier Transport and Injection of Ga2O3 Deep-Ultraviolet Schottky Photodiode by Introducing Impurity Energy Level

被引:7
作者
Yang, Li-Li [1 ,2 ]
Liu, Zeng [1 ,2 ]
Li, Shan [1 ,2 ]
Zhang, Mao-Lin [1 ,2 ]
Xi, Zhao-Ying [1 ,2 ]
Xu, Qiang [1 ,2 ]
Yan, Si-Han [1 ,2 ]
Guo, Yu-Feng [1 ,2 ]
Tang, Wei-Hua [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun NJUPT, Coll Integrated Circuit Sci & Engn, Innovat Ctr Gallium Oxide Semicond GAO, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun NJUPT, Natl & Local Joint Engn Lab RF Integrat & Microas, Nanjing 210023, Jiangsu, Peoples R China
关键词
Sn-Ga2O3; ultrahigh responsivity; Schottky photodiode; carrier transport and injection; impurity energy level; PERFORMANCE; POLARIZATION;
D O I
10.1109/LED.2023.3346915
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, a Ti/Sn-Ga2O3/Ni Schottky photodiode device was achieved by a rarely-reported PECVD technology. Benefitting from the introduction of Sn impurity energy level, which provides extra paths for carriers' generation and helps create a stronger built-in electric field to facilitate carriers' separation, the carrier transport and injection efficiency of device are collaboratively enhanced. Under 254 nm deep-ultraviolet (DUV) light, the device displays an ultrahigh responsivity (R) of 3508A/W, outperforming the corresponding Ti/Ga2O3/Ni device (14.7 A/W) and many other Sn-doped Ga2O3 photodetectors (PDs). Meanwhile, the device exhibits the low dark current of -6.6pA/4.79nA (similar to 720 rectification ratio) under dark conditions, together with a remarkable external quantum efficiency of 1.72 x 10(6)%, an outstanding detectivity of 4.9 x 10(14) Jones at 5 V bias under DUV illumination. Furthermore, the device can operate in self-powered mode with an R of 100 mA/W as well, and this work demonstrates the huge potential of high-performance PECVD-grown elemental-doped Ga2O3 film-based PDs.
引用
收藏
页码:420 / 423
页数:4
相关论文
共 31 条
[1]   Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes [J].
Armstrong, Andrew M. ;
Crawford, Mary H. ;
Jayawardena, Asanka ;
Ahyi, Ayayi ;
Dhar, Sarit .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (10)
[2]   Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3 [J].
Dong, Linpeng ;
Jia, Renxu ;
Xin, Bin ;
Peng, Bo ;
Zhang, Yuming .
SCIENTIFIC REPORTS, 2017, 7
[3]   Growth and characterization of Sn-doped β-Ga2O3 thin films by chemical vapor deposition using solid powder precursors toward solar-blind ultraviolet photodetection [J].
Fan, Ming-Ming ;
Lu, Ying-Jie ;
Xu, Kang-Li ;
Cui, Yan-Xia ;
Cao, Ling ;
Li, Xiu-Yan .
APPLIED SURFACE SCIENCE, 2020, 509
[4]   Fabrication of non-polar GaN based highly responsive and fast UV photodetector [J].
Gundimeda, Abhiram ;
Krishna, Shibin ;
Aggarwal, Neha ;
Sharma, Alka ;
Sharma, Nita Dilawar ;
Maurya, K. K. ;
Husale, Sudhir ;
Gupta, Govind .
APPLIED PHYSICS LETTERS, 2017, 110 (10)
[5]   Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3 [J].
Hajnal, Z ;
Miró, J ;
Kiss, G ;
Réti, F ;
Deák, P ;
Herndon, RC ;
Kuperberg, JM .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (07) :3792-3796
[6]   Electronic and thermodynamic properties of β-Ga2O3 [J].
He, Haiying ;
Blanco, Miguel A. ;
Pandey, Ravindra .
APPLIED PHYSICS LETTERS, 2006, 88 (26)
[7]   Graphene-β-Ga2O3 Heterojunction for Highly Sensitive Deep UV Photodetector Application [J].
Kong, Wei-Yu ;
Wu, Guo-An ;
Wang, Kui-Yuan ;
Zhang, Teng-Fei ;
Zou, Yi-Feng ;
Wang, Dan-Dan ;
Luo, Lin-Bao .
ADVANCED MATERIALS, 2016, 28 (48) :10725-+
[8]   Sol-gel preparation of Sn doped gallium oxide films for application in solar-blind ultraviolet photodetectors [J].
Li, Yana ;
Li, Yuqiang ;
Ji, Yi ;
Wang, Hong ;
Zhong, Dingyong .
JOURNAL OF MATERIALS SCIENCE, 2022, 57 (02) :1186-1197
[9]   A review of Ga2O3 deep-ultraviolet metal-semiconductor Schottky photodiodes [J].
Liu, Zeng ;
Tang, Weihua .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (09)
[10]   Ultrahigh-performance planar β-Ga2O3 solar-blind Schottky photodiode detectors [J].
Liu Zeng ;
Zhi YuSong ;
Zhang ShaoHui ;
Li Shan ;
Yan ZuYong ;
Gao Ang ;
Zhang ShiYu ;
Guo DaoYou ;
Wang Jun ;
Wu ZhenPing ;
Li PeiGang ;
Tang WeiHua .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (01) :59-64