Finite-Time Lyapunov Exponents of Deep Neural Networks

被引:6
|
作者
Storm, L. [1 ]
Linander, H. [2 ,3 ]
Bec, J. [4 ,5 ]
Gustavsson, K. [1 ]
Mehlig, B. [1 ]
机构
[1] Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden
[2] Chalmers Tech Univ, Dept Math Sci, Gothenburg, Sweden
[3] Univ Gothenburg, Gothenburg, Sweden
[4] PSL Res Univ, MINES Paris, CNRS, Cemef, F-06900 Valbonne, France
[5] Univ Cote Dazur, Inria, CNRS, Cemef, F-06900 Valbonne, France
基金
瑞典研究理事会;
关键词
Dynamical systems;
D O I
10.1103/PhysRevLett.132.057301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute how small input perturbations affect the output of deep neural networks, exploring an analogy between deep feed-forward networks and dynamical systems, where the growth or decay of local perturbations is characterized by finite-time Lyapunov exponents. We show that the maximal exponent forms geometrical structures in input space, akin to coherent structures in dynamical systems. Ridges of large positive exponents divide input space into different regions that the network associates with different classes. These ridges visualize the geometry that deep networks construct in input space, shedding light on the fundamental mechanisms underlying their learning capabilities.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Characteristic distributions of finite-time Lyapunov exponents
    Prasad, A
    Ramaswamy, R
    PHYSICAL REVIEW E, 1999, 60 (03): : 2761 - 2766
  • [2] Statistics of finite-time Lyapunov exponents in the Ulam map
    Anteneodo, C
    PHYSICAL REVIEW E, 2004, 69 (01): : 6
  • [3] A unified approach to finite-time hyperbolicity which extends finite-time Lyapunov exponents
    Doan, T. S.
    Karrasch, D.
    Nguyen, T. Y.
    Siegmund, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) : 5535 - 5554
  • [4] Backward Finite-Time Lyapunov Exponents in Inertial Flows
    Guenther, Tobias
    Theisel, Holger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 970 - 979
  • [5] Finite-Time Lyapunov Exponents for SPDEs with Fractional Noise
    Neamtu, Alexandra Blessing
    Bloemker, Dirk
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (01)
  • [6] Finite-Time Lyapunov Exponents for Products of Random Transformations
    Andrea Gamba
    Journal of Statistical Physics, 2003, 112 : 193 - 218
  • [7] Finite-time Lyapunov exponents for products of random transformations
    Gamba, A
    JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (1-2) : 193 - 218
  • [8] New method for computing finite-time Lyapunov exponents
    Okushima, T
    PHYSICAL REVIEW LETTERS, 2003, 91 (25)
  • [9] On the Numerical Value of Finite-Time Pseudo-Lyapunov Exponents
    Schmidt, Franziska
    Lamarque, Claude-Henri
    MODELING, SIMULATION AND CONTROL OF NONLINEAR ENGINEERING DYNAMICAL SYSTEMS: STATE-OF-THE-ART, PERSPECTIVES AND APPLICATIONS, 2009, : 13 - +
  • [10] Transient chaos measurements using finite-time Lyapunov exponents
    Stefanski, K.
    Buszko, K.
    Piecyk, K.
    CHAOS, 2010, 20 (03)