Predicting the anthropogenic impacts on vegetation diversity of protected rangelands: an application of artificial intelligence

被引:2
作者
Jahani, Ali [1 ]
Saffariha, Maryam [3 ]
Nezhad, Zeinab Hosein [2 ]
机构
[1] Res Ctr Environm & Sustainable Dev, Pardisan Pk, Tehran, Iran
[2] Univ Calif Davis, Dept Plant Sci, Davis, CA USA
[3] Malayer Univ, Nat Resources & Environm, Dept Environm, Hamadan, Iran
关键词
Multilayer perceptron; Protected area; Radial basis neural network; Rangeland; Support vector regression; Vegetation diversity; TOURISM; CHINA;
D O I
10.1007/s10531-024-02783-3
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
This study delves into anthropogenic impacts on vegetation diversity within mountainous protected rangelands, exploring habitat weakening and biodiversity loss. Employing artificial intelligence, specifically multilayer perceptron (MLP), radial basis neural network (RBFNN), and support vector regression (SVR), we predict vegetation diversity responses to ecological conditions, livestock grazing, and tourism. Assessing 305 sample plots with 21 variables, the MLP model demonstrated superior accuracy (R2 = 0.93 in training, R2 = 0.81 in the test dataset) compared to RBFNN and SVR. Sensitivity analyses highlighted anthropogenic factors like distance to tourist destinations, roads, pastures, and animal husbandries as significant influencers of vegetation diversity in mountainous protected rangelands. To enhance practical application, a user-friendly graphical interface was developed, enabling rangeland managers to utilize the MLP model. This tool facilitates estimation of livestock grazing and tourism impacts on vegetation diversity, empowering informed decision-making for the preservation and sustainability of mountainous protected rangeland ecosystems.
引用
收藏
页码:1051 / 1078
页数:28
相关论文
共 51 条
[1]   Aesthetic quality modeling of the form of natural elements in the environment of urban parks [J].
Aboufazeli, Sahar ;
Jahani, Ali ;
Farahpour, Mehdi .
EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) :327-338
[2]  
Attar Sahragard F., 2023, J ENV STUD, V48, P555
[3]   Comparative Study on the Machine Learning and Regression-Based Approaches to Predict the Hydraulic Jump Sequent Depth Ratio [J].
Baharvand, Saman ;
Jozaghi, Ali ;
Fatahi-Alkouhi, Reza ;
Karimzadeh, Saeed ;
Nasiri, Ruhollah ;
Lashkar-Ara, Babak .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2021, 45 (04) :2719-2732
[4]  
Ballantyne M., 2012, Journal of Ecotourism, V11, P34, DOI 10.1080/14724049.2011.628398
[5]   The pesticide fate tool for groundwater vulnerability assessment within the geospatial decision support system LandSupport [J].
Bancheri, Marialaura ;
Fusco, Francesco ;
Dalla Torre, Daniele ;
Terribile, Fabio ;
Manna, Piero ;
Langella, Giuliano ;
De Vita, Pantaleone ;
Allocca, Vincenzo ;
Loishandl-Weisz, Harald ;
Hermann, Tamas ;
De Michele, Carlo ;
Coppola, Antonio ;
Mileti, Florindo Antonio ;
Basile, Angelo .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 807
[6]   Festuca campestris density and defoliation regulate abundance of the rhizomatous grass Poa pratensis in a fallow field [J].
Bork, Edward W. ;
Hewins, Daniel B. ;
Tannas, Steven ;
Willms, Walter D. .
RESTORATION ECOLOGY, 2018, 26 (01) :82-90
[7]   FATE-HD: a spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale [J].
Boulangeat, Isabelle ;
Georges, Damien ;
Thuiller, Wilfried .
GLOBAL CHANGE BIOLOGY, 2014, 20 (07) :2368-2378
[8]   CHALLENGES TO ACTOR-ORIENTED ENVIRONMENTAL GOVERNANCE: EXAMPLES FROM THREE MEXICAN BIOSPHERE RESERVES [J].
Brenner, Ludger ;
Job, Hubert .
TIJDSCHRIFT VOOR ECONOMISCHE EN SOCIALE GEOGRAFIE, 2012, 103 (01) :1-19
[9]   Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview [J].
De Vries, W. ;
Wamelink, G. W. W. ;
van Dobben, H. ;
Kros, J. ;
Reinds, G. J. ;
Mol-Dukstra, J. P. ;
Smart, S. M. ;
Evans, C. D. ;
Rowe, E. C. ;
Belyazid, S. ;
Sverdrup, H. U. ;
van Hinsberg, A. ;
Posch, M. ;
Hettelingh, J. -P. ;
Spranger, T. ;
Bobbink, R. .
ECOLOGICAL APPLICATIONS, 2010, 20 (01) :60-79
[10]  
Faizi M., 2022, IRAN J PHARM SCI, V18, P116