Real-Time Adaptive Physical Sensor Processing with SNN Hardware

被引:0
作者
Madrenas, Jordi [1 ]
Vallejo-Mancero, Bernardo [1 ]
Oltra-Oltra, Josep Angel [1 ]
Zapata, Mireya [2 ]
Cosp-Vilella, Jordi [1 ]
Calatayud, Robert [1 ]
Moriya, Satoshi [3 ]
Sato, Shigeo [3 ]
机构
[1] Univ Politecn Cataluna, Dept Elect Engn, Barcelona, Catalunya, Spain
[2] Univ Indoamer, Ctr Invest Mecatron & Sistemas Interact, MIST, Quito, Ecuador
[3] Tohoku Univ, Elect Commun Res Inst, Sendai, Japan
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT V | 2023年 / 14258卷
关键词
Spiking Neural Networks (SNNs); HEENS; Real-time sensor processing; Spike-rate filters; adaptive-range sensors; MODEL; NETWORKS; NEURONS;
D O I
10.1007/978-3-031-44192-9_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spiking Neural Networks (SNNs) offer bioinspired computation based on local adaptation and plasticity as well as close biological compatibility. In this work, after reviewing the Hardware Emulator of Evolving Neural Systems (HEENS) architecture and its Computer-Aided Engineering (CAE) design flow, a spiking implementation of an adaptive physical sensor input scheme based on time-rate Band-Pass Filter (BPF) is proposed for real-time execution of large dynamic range sensory edge processing nodes. Simulation and experimental results of the SNN operating in real-time with an adaptive-range accelerometer input example are shown. This work opens the path to compute with SNNs multiple physical sensor information for perception applications.
引用
收藏
页码:423 / 434
页数:12
相关论文
共 17 条
[1]   Lapicque's introduction of the integrate-and-fire model neuron (1907) [J].
Abbott, LF .
BRAIN RESEARCH BULLETIN, 1999, 50 (5-6) :303-304
[2]   Hardware-Software Co-Design for Efficient and Scalable Real-Time Emulation of SNNs on the Edge [J].
Angel Oltra-Oltra, Josep ;
Madrenas, Jordi ;
Zapata, Mireya ;
Vallejo, Bernardo ;
Mata-Hernandez, Diana ;
Sato, Shigeo .
2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
[3]  
[Anonymous], About us
[4]   TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years [J].
DeBole, Michael V. ;
Taba, Brian ;
Amir, Arnon ;
Akopyan, Filipp ;
Andreopoulos, Alexander ;
Risk, William P. ;
Kusnitz, Jeff ;
Otero, Carlos Ortega ;
Nayak, Tapan K. ;
Appuswamy, Rathinakumar ;
Carlson, Peter J. ;
Cassidy, Andrew S. ;
Datta, Pallab ;
Esser, Steven K. ;
Garreau, Guillaume J. ;
Holland, Kevin L. ;
Lekuch, Scott ;
Mastro, Michael ;
McKinstry, Jeff ;
di Nolfo, Carmelo ;
Paulovicks, Brent ;
Sawada, Jun ;
Schleupen, Kai ;
Shaw, Benjamin G. ;
Klamo, Jennifer L. ;
Flickner, Myron D. ;
Arthur, John V. ;
Modha, Dharmendra S. .
COMPUTER, 2019, 52 (05) :20-29
[5]   AER-SRT: Scalable spike distribution by means of synchronous serial ring topology address event representation [J].
Dorta, Taho ;
Zapata, Mireya ;
Madrenas, Jordi ;
Sanchez, Giovanny .
NEUROCOMPUTING, 2016, 171 :1684-1690
[6]   Efficient Deployment of Spiking Neural Networks on SpiNNaker Neuromorphic Platform [J].
Galanis, Ioannis ;
Anagnostopoulos, Iraklis ;
Nguyen, Chinh ;
Bares, Guillermo .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (06) :1937-1941
[7]   Simple model of spiking neurons [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06) :1569-1572
[8]   Networks of spiking neurons: The third generation of neural network models [J].
Maass, W .
NEURAL NETWORKS, 1997, 10 (09) :1659-1671
[9]   Towards Efficient and Adaptive Cyber Physical Spiking Neural Integrated Systems [J].
Madrenas, Jordi ;
Zapata, Mireya ;
Fernandez, Daniel ;
Maria Sanchez-Chiva, Josep ;
Valle, Juan ;
Mata-Hernandez, Diana ;
Angel Oltra, Josep ;
Cosp-Vilella, Jordi ;
Sato, Shigeo .
2020 27TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2020,
[10]  
Mayr C, 2019, Arxiv, DOI [arXiv:1911.02385, 10.48550/arXiv.1911.02385, DOI 10.48550/ARXIV.1911.02385]