Synergistic catalysis and detection of hydrogen peroxide based on a 3D-dimensional molybdenum disulfide interspersed carbon nanotubes nanonetwork immobilized chloroperoxidase biosensor

被引:2
作者
Zhu, Xuefang [1 ]
He, Meng [1 ]
Zhang, Jing [1 ]
Jiang, Yucheng [1 ]
机构
[1] Shaanxi Normal Univ, Sch Chem & Chem Engn, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Detection of hydrogen peroxide; Chloroperoxidase; Ionic liquid; Electroenzymatic synergistic catalysis; Biosensor; GRAPHENE; SENSORS;
D O I
10.1016/j.bioelechem.2023.108507
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Enzyme-based electrochemical biosensors are promising for a wide range of applications due to their unique specificity and high sensitivity. In this work, we present a novel enzyme bioelectrode for the sensing of hydrogen peroxide (H2O2). The molybdenum disulfide nanoflowers (MoS2) is self-assembled on carboxylated carbon nanotubes (CNT) to form a three-dimensional conductive network (3D-CNT@MoS2), which is modified with 1-ethyl-3-methylimidazolium bromide (ILEMB), and followed by anchoring chloroperoxidase (CPO) onto the nanocomposite (3D-CNT@MoS2/ILEMB) through covalent binding to form a bioconjugate (3D-CNT@MoS2/ ILEMB/CPO). The ILEMB modified 3D-CNT@MoS2/ILEMB has good hydrophilicity and conductivity, which not only provides a suitable microenvironment for the immobilization of CPO but also facilitates the direct electron transfer (DET) of CPO at the electrode. The 3D-CNT@MoS2/ILEMB/CPO bioconjugate modified electrode has a high catalytic efficiency for H2O2. Through electroenzymatic synergistic catalysis for H2O2 detection by 3D-CNT@MoS2/ILEMB/CPO-GCE, a wide detection range of 0.2 mu mol & sdot;L-1 to 997 mu mol & sdot;L-1 and a low detection limit of 0.097 mu mol center dot L-1 with high sensitivity of 1050 mu A & sdot;mmol & sdot;L-1 & sdot;cm-2 were achieved. Additionally, the 3D-CNT@MoS2/ILEMB/CPO-GCE displayed exceptional stability, selectivity, and reproducibility. Furthermore, 3D-CNT@MoS2/ILEMB/CPO-GCE is suitable for sensing of H2O2 in human urine s with good recovery, suggesting its potential application for the detection of H2O2 in biomedical field.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes [J].
Adachi, Taiki ;
Kitazumi, Yuki ;
Shirai, Osamu ;
Kano, Kenji .
CATALYSTS, 2020, 10 (02)
[2]   Development of carbon-based metal free electrochemical sensor for hydrogen peroxide by surface modification of carbon nanowalls [J].
Bohlooli, Fatemeh ;
Anagri, Abdessadk ;
Mori, Shinsuke .
CARBON, 2022, 196 :327-336
[3]   Carbon Nanotubes/Regenerated Silk Composite as a Three-Dimensional Printable Bio-Adhesive Ink with Self-Powering Properties [J].
Bon, Silvia Bittolo ;
Chiesa, Irene ;
Degli Esposti, Micaela ;
Morselli, Davide ;
Fabbri, Paola ;
De Maria, Carmelo ;
Morabito, Antonino ;
Coletta, Riccardo ;
Calamai, Martino ;
Pavone, Francesco Saverio ;
Tonin, Rodolfo ;
Morrone, Amelia ;
Giorgi, Giacomo ;
Valentini, Luca .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (18) :21007-21017
[4]   A novel amperometric H2O2 biosensor constructed by cress peroxidase entrapped on BiFeO3 nanoparticles [J].
Caglar, Bulent ;
Icer, Fatih ;
Ozdokur, Kemal Volkan ;
Caglar, Sema ;
Ozdemir, Agah Oktay ;
Guner, Eda Keles ;
Beser, Burcu Meryem ;
Altay, Ahmet ;
Cirak, Cagri ;
Dogan, Bilge ;
Tabak, Ahmet .
MATERIALS CHEMISTRY AND PHYSICS, 2021, 262
[5]   Smartphone-based 3D-printed electrochemiluminescence enzyme biosensor for reagentless glucose quantification in real matrices [J].
Calabria, Donato ;
Lazzarini, Elisa ;
Pace, Andrea ;
Trozzi, Ilaria ;
Zangheri, Martina ;
Cinti, Stefano ;
Difonzo, Marinella ;
Valenti, Giovanni ;
Guardigli, Massimo ;
Paolucci, Francesco ;
Mirasoli, Mara .
BIOSENSORS & BIOELECTRONICS, 2023, 227
[6]   Modular Label-Free Electrochemical Biosensor Loading Nature-Inspired Peptide toward the Widespread Use of COVID-19 Antibody Tests [J].
Castro, Ana C. H. ;
Bezerra, Italo R. S. ;
Pascon, Aline M. ;
da Silva, Gabriela H. ;
Philot, Eric A. ;
de Oliveira, Vivian L. ;
Mancini, Rodrigo S. N. ;
Schleder, Gabriel R. ;
Castro, Carlos E. ;
de Carvalho, Luciani R. S. ;
Fernandes, Bianca H. V. ;
Cilli, Eduardo M. ;
Sanches, Paulo R. S. ;
Santhiago, Murilo ;
Charlie-Silva, Ives ;
Martinez, Diego S. T. ;
Scott, Ana L. ;
Alves, Wendel A. ;
Lima, Renato S. .
ACS NANO, 2022, 16 (09) :14239-14253
[7]   Development of a novel microfluidic biosensing platform integrating micropillar array electrode and acoustic microstreaming techniques [J].
Chen, Chaozhan ;
Ran, Bin ;
Liu, Bo ;
Liu, Xiaoxuan ;
Liu, Ya ;
Lan, Minbo ;
Manasseh, Richard ;
Zhu, Yonggang .
BIOSENSORS & BIOELECTRONICS, 2023, 223
[8]   A2O2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging [J].
Chen, Junjie ;
Chen, Longqi ;
Wu, Yinglong ;
Fang, Yichang ;
Zeng, Fang ;
Wu, Shuizhu ;
Zhao, Yanli .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Development of biophoto anodes using Ulvophyceae macroalgae [J].
Choque, Sergio ;
Zuniga, Cesar ;
Gonzalez, Alberto ;
Moenne, Alejandra ;
Antiochia, Riccarda ;
Gorton, Lo ;
Tasca, Federico .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (06) :2661-2669
[10]   Highly Sensitive Hydrogen Peroxide Biosensor Based on Tobacco Peroxidase Immobilized on p-Phenylenediamine Diazonium Cation Grafted Carbon Nanotubes: Preventing Fenton-like Inactivation at Negative Potential [J].
Ciogli, Leonardo ;
Zumpano, Rosaceleste ;
Poloznikov, Andrey A. ;
Hushpulian, Dmitry M. ;
Tishkov, Vladimir I. ;
Andreu, Rafael ;
Gorton, Lo ;
Mazzei, Franco ;
Favero, Gabriele ;
Bollella, Paolo .
CHEMELECTROCHEM, 2021, 8 (13) :2495-2504