Risk of bias assessments in individual participant data meta-analyses of test accuracy and prediction models: a review shows improvements are needed

被引:2
作者
Levis, Brooke [1 ,2 ,8 ]
Snell, Kym I. E. [3 ,4 ]
Damen, Johanna A. A. [5 ]
Hattle, Miriam [3 ,4 ]
Ensor, Joie [3 ,4 ]
Dhiman, Paula [6 ]
Navarro, Constanza L. Andaur [5 ]
Takwoingi, Yemisi [3 ,4 ]
Whiting, Penny F. [7 ]
Debray, Thomas P. A. [5 ]
Reitsma, Johannes B. [5 ]
Moons, Karel G. M. [5 ]
Collins, Gary S. [6 ]
Riley, Richard D. [3 ,4 ,9 ]
机构
[1] Keele Univ, Ctr Prognosis Res, Sch Med, Keele, England
[2] Jewish Gen Hosp, Ctr Clin Epidemiol, Lady Davis Inst Med Res, Montreal, PQ, Canada
[3] Univ Birmingham, Inst Appl Hlth Res, Coll Med & Dent Sci, Birmingham, England
[4] Birmingham Biomed Res Ctr, Natl Inst Hlth & Care Res NIHR, Birmingham, England
[5] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[6] Univ Oxford, Ctr Stat Med, Nuffield Dept Orthopaed Rheumatol & Musculoskeleta, Oxford, England
[7] Univ Bristol, Sch Social & Community Med, Bristol, England
[8] Jewish Gen Hosp, Lady Davis Inst Med Res, Ctr Clin Epidemiol, 3755 Cote Ste Catherine, Montreal, PQ H3T 1E2, Canada
[9] Univ Birmingham, Inst Appl Hlth Res, Coll Med & Dent Sci, Birmingham B15 2TT, England
关键词
Risk of bias; Individual participant data meta-analysis; Test accuracy; Prediction models; Applicability; Quality; QUADAS-2; PROBAST; POOLED ANALYSIS; TOOL; APPLICABILITY; VALIDATION; PROBAST; IMPACT; WOMEN;
D O I
10.1016/j.jclinepi.2023.10.022
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objectives: Risk of bias assessments are important in meta-analyses of both aggregate and individual participant data (IPD). There is limited evidence on whether and how risk of bias of included studies or datasets in IPD meta-analyses (IPDMAs) is assessed. We review how risk of bias is currently assessed, reported, and incorporated in IPDMAs of test accuracy and clinical prediction model studies and provide recommendations for improvement. Study Design and Setting: We searched PubMed (January 2018 -May 2020) to identify IPDMAs of test accuracy and prediction models, then elicited whether each IPDMA assessed risk of bias of included studies and, if so, how assessments were reported and sub-sequently incorporated into the IPDMAs. Results: Forty-nine IPDMAs were included. Nineteen of 27 (70%) test accuracy IPDMAs assessed risk of bias, compared to 5 of 22 (23%) prediction model IPDMAs. Seventeen of 19 (89%) test accuracy IPDMAs used Quality Assessment of Diagnostic Accuracy Studies -2 (QUADAS-2), but no tool was used consistently among prediction model IPDMAs. Of IPDMAs assessing risk of bias, 7 (37%) test ac-curacy IPDMAs and 1 (20%) prediction model IPDMA provided details on the information sources (e.g., the original manuscript, IPD, primary investigators) used to inform judgments, and 4 (21%) test accuracy IPDMAs and 1 (20%) prediction model IPDMA provided in-formation or whether assessments were done before or after obtaining the IPD of the included studies or datasets. Of all included IPDMAs, only seven test accuracy IPDMAs (26%) and one prediction model IPDMA (5%) incorporated risk of bias assessments into their meta-analyses. For future IPDMA projects, we provide guidance on how to adapt tools such as Prediction model Risk Of Bias ASsessment Tool (for prediction models) and QUADAS-2 (for test accuracy) to assess risk of bias of included primary studies and their IPD.Conclusion: Risk of bias assessments and their reporting need to be improved in IPDMAs of test accuracy and, especially, prediction model studies. Using recommended tools, both before and after IPD are obtained, will address this. (c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:16
相关论文
共 63 条
[1]   Bronchoalveolar lavage fluid lymphocytosis in chronic hypersensitivity pneumonitis: a systematic review and meta-analysis [J].
Adderley, Nicola ;
Humphreys, Christopher J. ;
Barnes, Hayley ;
Ley, Brett ;
Premji, Zahra A. ;
Johannson, Kerri A. .
EUROPEAN RESPIRATORY JOURNAL, 2020, 56 (02)
[2]   Assessment of NICE and USPSTF guidelines for identifying women at high risk of pre-eclampsia for tailoring aspirin prophylaxis in pregnancy: An individual participant data meta-analysis [J].
Al-Rubaie, Ziad Ta ;
Askie, Lisa M. ;
Hudson, H. Malcolm ;
Ray, Joel G. ;
Jenkins, Gregory ;
Lord, Sarah J. .
EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2018, 229 :159-166
[3]   Imputation approaches for estimating diagnostic accuracy for multiple tests from partially verified designs [J].
Albert, Paul S. .
BIOMETRICS, 2007, 63 (03) :947-957
[4]   Development of a risk score for early saphenous vein graft failure: An individual patient data meta-analysis [J].
Antonopoulos, Alexios S. ;
Odutayo, Ayodele ;
Oikonomou, Evangelos K. ;
Trivella, Marialena ;
Petrou, Mario ;
Collins, Gary S. ;
Antoniades, Charalambos .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2020, 160 (01) :116-+
[5]   Systematic Review of Aortic Dissection Detection Risk Score Plus D-dimer for Diagnostic Rule-out Of Suspected Acute Aortic Syndromes [J].
Bima, Paolo ;
Pivetta, Emanuele ;
Nazerian, Peiman ;
Toyofuku, Mamoru ;
Gorla, Riccardo ;
Bossone, Eduardo ;
Erbel, Raimund ;
Lupia, Enrico ;
Morello, Fulvio .
ACADEMIC EMERGENCY MEDICINE, 2020, 27 (10) :1013-1027
[6]   Diagnostic accuracy and added value of blood-based protein biomarkers for pancreatic cancer: A meta-analysis of aggregate and individual participant data [J].
Boyd, Lenka N. C. ;
Ali, Mahsoem ;
Leeflang, Mariska M. G. ;
Treglia, Giorgio ;
de Vries, Ralph ;
Le Large, Tessa Y. S. ;
Besselink, Marc G. ;
Giovannetti, Elisa ;
van Laarhoven, Hanneke W. M. ;
Kazemier, Geert .
ECLINICALMEDICINE, 2023, 55
[7]   Diagnostic accuracy of a novel tuberculosis point-of-care urine lipoarabinomannan assay for people living with HIV: A meta-analysis of individual in- and outpatient data [J].
Broger, Tobias ;
Nicol, Mark P. ;
Szekely, Rita ;
Bjerrum, Stephanie ;
Sossen, Bianca ;
Schutz, Charlotte ;
Opintan, Japheth A. ;
Johansen, Isik S. ;
Mitarai, Satoshi ;
Chikamatsu, Kinuyo ;
Kerkhoff, Andrew D. ;
Mace, Aurelien ;
Ongarello, Stefano ;
Meintjes, Graeme ;
Denkinger, Claudia M. ;
Schumacher, Samuel G. .
PLOS MEDICINE, 2020, 17 (05)
[8]   Predicting risk of chemotherapy-induced severe neutropenia: A pooled analysis in individual patients data with advanced lung cancer [J].
Cao, Xiaowen ;
Ganti, Apar Kishor ;
Stinchcombe, Thomas ;
Wong, Melisa L. ;
Ho, James C. ;
Shen, Chen ;
Liu, Yingzhou ;
Crawford, Jeffery ;
Pang, Herbert ;
Wang, Xiaofei .
LUNG CANCER, 2020, 141 :14-20
[9]   International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia [J].
Condoluci, Adalgisa ;
di Bergamo, Lodovico Terzi ;
Langerbeins, Petra ;
Hoechstetter, Manuela A. ;
Herling, Carmen D. ;
De Paoli, Lorenzo ;
Delgado, Julio ;
Rabe, Kari G. ;
Gentile, Massimo ;
Doubek, Michael ;
Mauro, Francesca R. ;
Chiodin, Giorgia ;
Mattsson, Mattias ;
Bahlo, Jasmin ;
Cutrona, Giovanna ;
Kotaskova, Jana ;
Deambrogi, Clara ;
Smedby, Karin E. ;
Spina, Valeria ;
Bruscaggin, Alessio ;
Wu, Wei ;
Moia, Riccardo ;
Bianchi, Elena ;
Gerber, Bernhard ;
Zucca, Emanuele ;
Gillessen, Silke ;
Ghielmini, Michele ;
Cavalli, Franco ;
Stussi, Georg ;
Hess, Mark A. ;
Baumann, Tycho S. ;
Neri, Antonino ;
Ferrarini, Manlio ;
Rosenquist, Richard ;
Forconi, Francesco ;
Foa, Robin ;
Pospisilova, Sarka ;
Morabito, Fortunato ;
Stilgenbauer, Stephan ;
Doehner, Hartmut ;
Parikh, Sameer A. ;
Wierda, William G. ;
Montserrat, Emili ;
Gaidano, Gianluca ;
Hallek, Michael ;
Rossi, Davide .
BLOOD, 2020, 135 (21) :1859-1869
[10]   The development and validation of a multivariable prognostic model to predict foot ulceration in diabetes using a systematic review and individual patient data meta-analyses [J].
Crawford, F. ;
Cezard, G. ;
Chappell, F. M. .
DIABETIC MEDICINE, 2018, 35 (11) :1480-1493