Protocol for inferring epithelial-to-mesenchymal transition trajectories from single-cell RNA sequencing data using R

被引:0
|
作者
Najafi, Annice [1 ]
Jolly, Mohit Kumar [2 ]
George, Jason T. [1 ,3 ,4 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
[2] Indian Inst Sci, Ctr Biosyst Sci & Engn, Bangalore 560012, India
[3] Texas A&M Univ, Intercollegiate Sch Engn Med, Houston, TX 77030 USA
[4] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77030 USA
来源
STAR PROTOCOLS | 2024年 / 5卷 / 01期
关键词
EMT;
D O I
10.1016/j.xpro.2023.102819
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The epithelial-to-mesenchymal transition (EMT) provides crucial insights into the metastatic process and possesses prognostic value within the cancer context. Here, we present COMET, an R package for inferring EMT trajectories and inter -state transition rates from single -cell RNA sequencing data. We describe steps for finding the optimal number of EMT genes for a specific context, estimating EMT -related trajectories, optimal fitting of continuous -time Markov chain to inferred trajectories, and estimating inter -state transition rates.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data
    Sha, Yutong
    Wang, Shuxiong
    Zhou, Peijie
    Nie, Qing
    NUCLEIC ACIDS RESEARCH, 2020, 48 (17) : 9505 - 9520
  • [2] Urinary Single-Cell RNA Sequencing of Kidney Allograft Recipients Detects Podocyte Epithelial-to-Mesenchymal Transition in Kidney Transplant Recipients
    Muthukumar, Thangamani
    Belkadi, Aziz
    Li, Carol Y.
    Thareja, Gaurav
    Dadhania, Darshana M.
    Suthanthiran, Manikkam
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [3] A novel method for inferring B cell clonal lineages from single-cell RNA sequencing data
    Weber, Leah
    Reiman, Derek
    Roddur, Mrinmoy
    Qi, Yuanyuan
    El-Kebir, Mohammed
    Khan, Aly
    JOURNAL OF IMMUNOLOGY, 2024, 212 (01):
  • [4] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Jong Kyoung Kim
    John C Marioni
    Genome Biology, 14
  • [5] Inferring population dynamics from single-cell RNA-sequencing time series data
    Fischer, David S.
    Fiedler, Anna K.
    Kernfeld, Eric M.
    Genga, Ryan M. J.
    Bastidas-Ponce, Aimee
    Bakhti, Mostafa
    Lickert, Heiko
    Hasenauer, Jan
    Maehr, Rene
    Theis, Fabian J.
    NATURE BIOTECHNOLOGY, 2019, 37 (04) : 461 - +
  • [6] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Kim, Jong Kyoung
    Marioni, John C.
    GENOME BIOLOGY, 2013, 14 (01): : 1 - 12
  • [7] Inferring population dynamics from single-cell RNA-sequencing time series data
    David S. Fischer
    Anna K. Fiedler
    Eric M. Kernfeld
    Ryan M. J. Genga
    Aimée Bastidas-Ponce
    Mostafa Bakhti
    Heiko Lickert
    Jan Hasenauer
    Rene Maehr
    Fabian J. Theis
    Nature Biotechnology, 2019, 37 : 461 - 468
  • [8] Identifying conserved properties of the epithelial-mesenchymal transition in cancer using highly multiplexed single-cell RNA sequencing.
    Vanderhyden, Barbara C.
    Cook, David P.
    CLINICAL CANCER RESEARCH, 2020, 26 (13) : 118 - 118
  • [9] Inferring spatial organization of tumor microenvironment from single-cell RNA sequencing data using graph embedding.
    Ding, Liang
    Shi, Hao
    Yan, Koon-Kiu
    Dhungana, Yogesh
    Natarajan, Sivaraman
    Easton, John
    Chiang, Jason
    Tinkle, Christopher L.
    Zhu, Xiaoyan
    Cai, Liming
    Baker, Suzanne J.
    Chi, Hongbo
    Yu, Jiyang
    CANCER RESEARCH, 2021, 81 (13)
  • [10] OncoNEM: inferring tumor evolution from single-cell sequencing data
    Ross, Edith M.
    Markowetz, Florian
    GENOME BIOLOGY, 2016, 17