An efficient ptychography reconstruction strategy through fine-tuning of large pre-trained deep learning model

被引:6
作者
Pan, Xinyu [1 ,2 ]
Wang, Shuo [1 ,2 ]
Zhou, Zhongzheng [1 ,2 ]
Zhou, Liang [1 ,2 ]
Liu, Peng [1 ,2 ]
Li, Chun [1 ,3 ]
Wang, Wenhui [1 ,3 ]
Zhang, Chenglong [1 ,2 ]
Dong, Yuhui [1 ,2 ]
Zhang, Yi [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Spallat Neutron Source Sci Ctr, Dongguan 523803, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
ALGORITHM;
D O I
10.1016/j.isci.2023.108420
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With pre-trained large models and their associated fine-tuning paradigms being constantly applied in deep learning, the performance of large models achieves a dramatic boost, mostly owing to the improvements on both data quantity and quality. Next-generation synchrotron light sources offer ultra-bright and highly coherent X-rays, which are becoming one of the largest data sources for scientific experiments. As one of the most data-intensive scanning-based imaging methodologies, ptychography produces an immense amount of data, making the adoption of large deep learning models possible. Here, we introduce and refine the architecture of a neural network model to improve the reconstruction performance, through fine-tuning large pre-trained model using a variety of datasets. The pre-trained model exhibits remarkable generalization capability, while the fine-tuning strategy enhances the reconstruction quality. We anticipate this work will contribute to the advancement of deep learning methods in ptychography, as well as in broader coherent diffraction imaging methodologies in future.
引用
收藏
页数:16
相关论文
共 49 条
[1]  
Metzler CA, 2018, Arxiv, DOI [arXiv:1803.00212, DOI 10.48550/ARXIV.1803.00212]
[2]   In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature [J].
Baier, Sina ;
Damsgaard, Christian D. ;
Scholz, Maria ;
Benzi, Federico ;
Rochet, Amelie ;
Hoppe, Robert ;
Scherer, Torsten ;
Shi, Junjie ;
Wittstock, Arne ;
Weinhausen, Britta ;
Wagner, Jakob B. ;
Schroer, Christian G. ;
Grunwaldt, Jan-Dierk .
MICROSCOPY AND MICROANALYSIS, 2016, 22 (01) :178-188
[3]  
Barutcu Semih, 2020, 2020 IEEE International Conference on Image Processing (ICIP), P96, DOI 10.1109/ICIP40778.2020.9190775
[4]   X-ray Ptychography Imaging of Human Chromosomes After Low-dose Irradiation [J].
Bhartiya, Archana ;
Batey, Darren ;
Cipiccia, Silvia ;
Shi, Xiaowen ;
Rau, Christoph ;
Botchway, Stanley ;
Yusuf, Mohammed ;
Robinson, Ian K. .
CHROMOSOME RESEARCH, 2021, 29 (01) :107-126
[5]  
Brown TB, 2020, ADV NEUR IN, V33
[6]   Influence of the overlap parameter on the convergence of the ptychographical iterative engine [J].
Bunk, Oliver ;
Dierolf, Martin ;
Kynde, Soren ;
Johnson, Ian ;
Marti, Othmar ;
Pfeiffer, Franz .
ULTRAMICROSCOPY, 2008, 108 (05) :481-487
[7]   Rapid 3D nanoscale coherent imaging via physics-aware deep learning [J].
Chan, Henry ;
Nashed, Youssef S. G. ;
Kandel, Saugat ;
Hruszkewycz, Stephan O. ;
Sankaranarayanan, Subramanian K. R. S. ;
Harder, Ross J. ;
Cherukara, Mathew J. .
APPLIED PHYSICS REVIEWS, 2021, 8 (02)
[8]   3D single-shot ptychography with highly tilted illuminations [J].
Chang, Chengcheng ;
Pan, Xingchen ;
Tao, Hua ;
Liu, Cheng ;
Veetil, Suhas P. ;
Zhu, Jianqiang .
OPTICS EXPRESS, 2021, 29 (19) :30878-30891
[9]  
Chang HB, 2019, IEEE IMAGE PROC, P2931, DOI [10.1109/ICIP.2019.8803022, 10.1109/icip.2019.8803022]
[10]   Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose [J].
Chen, Zhen ;
Odstrcil, Michal ;
Jiang, Yi ;
Han, Yimo ;
Chiu, Ming-Hui ;
Li, Lain-Jong ;
Muller, David A. .
NATURE COMMUNICATIONS, 2020, 11 (01)