THE TWISTED RUELLE ZETA FUNCTION ON COMPACT HYPERBOLIC ORBISURFACES AND REIDEMEISTER-TURAEV TORSION

被引:0
作者
Benard, Leo [1 ]
Frahm, Jan [2 ]
Spilioti, Polyxeni [3 ]
机构
[1] Aix Marseille Univ, Inst Math Marseille, Site St Charles,3 Pl Victor Hugo,Case 19, F-13331 Marseille 3, France
[2] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus, Denmark
[3] Georg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
来源
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES | 2023年 / 10卷
关键词
Hyperbolic orbisurface; twisted Ruelle zeta function; non-unitary representation; Reidemeister-Turaev torsion; Selberg trace formula; SELBERG TRACE FORMULA; ANALYTIC-TORSION; ZERO;
D O I
10.5802/jep.247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
- Let X be a compact hyperbolic surface with finite order singularities, X1 its unit tangent bundle. We consider the Ruelle zeta function R(s; p) associated to a representation p:pi 1(X1)-+ GL(V rho). If p does not factor through pi 1(X), we show that the value at 0 of the Ruelle zeta function equals the sign-refined Reidemeister-Turaev torsion of (X1, p) with respect to the Euler structure induced by the geodesic flow and to the natural homology orientation of X1. It generalizes Fried's conjecture to non-unitary representations, and solves the phase and sign ambiguity in the unitary case. We also compute the vanishing order and the leading coefficient of the Ruelle zeta function at s = 0 when p factors through x1(X).
引用
收藏
页码:1391 / 1439
页数:50
相关论文
共 36 条