A Low-Power PPG Processor for Real-Time Biometric Identification and Heart Rate Estimation

被引:2
作者
Chang, Hua-Chien [1 ,2 ]
Wang, Ting [1 ]
Liao, Chi-An [1 ]
Liu, Tsung-Te [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10617, Taiwan
[2] MediaTek, Comp & Artificial Intelligence Dept, Hsinchu 300, Taiwan
关键词
Low power; biometric identification; heart rate estimation; neural network (NN); photoplethysmography (PPG);
D O I
10.1109/TCSII.2023.3291891
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents a low-power processor using Photoplethysmography (PPG) for real-time biometric identification (ID) and heart rate (HR) estimation. The proposed processor features a low-power, highly-integrated solution by using the algorithm-hardware co-design approach with the proposed compact neural-network topology, model compression flow, and efficient hardware architecture. A prototype chip fabricated in the 180 nm CMOS process occupies an area of 5.80 mm(2). Measurement results show that the proposed design can operate at 320 KHz and realize simultaneous ID and HR estimation with state-of-the-art prediction performances while consuming 427.0 mu W at 1 V. This represents 8.6x, 4.1x, and 32x performance improvements in area, power, and latency, respectively, when compared to the previous works.
引用
收藏
页码:3932 / 3936
页数:5
相关论文
共 9 条
[1]   CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment [J].
Biswas, Dwaipayan ;
Everson, Luke ;
Liu, Muqing ;
Panwar, Madhuri ;
Verhoef, Bram-Ernst ;
Patki, Shrishail ;
Kim, Chris H. ;
Acharyya, Amit ;
Van Hoof, Chris ;
Konijnenburg, Mario ;
Van Helleputte, Nick .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (02) :282-291
[2]  
Chiueh T., 2012, BASEBAND RECEIVER DE
[3]   BiometricNet: Deep Learning based Biometric Identification using Wrist-Worn PPG [J].
Everson, Luke ;
Biswas, Dwaipayan ;
Panwar, Madhuri ;
Rodopoulos, Dimitrios ;
Acharyya, Amit ;
Kim, Chris H. ;
Van Hoof, Chris ;
Konijnenburg, Mario ;
Van Helleputte, Nick .
2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
[4]  
Goertzel G., 1958, The American Mathematical Monthly, V65, P34, DOI [DOI 10.2307/2310304, 10.2307/2310304]
[5]   SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation [J].
Islam, Mohammad Tariqul ;
Ahmed, Sk. Tanvir ;
Shahnaz, Celia ;
Fattah, Shaikh Anowarul .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (03) :689-702
[6]  
Karimian N, 2017, INT CONF ACOUST SPEE, P4636, DOI 10.1109/ICASSP.2017.7953035
[7]   Binary CorNET: Accelerator for HR Estimation From Wrist-PPG [J].
Rocha, Leandro Giacomini ;
Biswas, Dwaipayan ;
Verhoef, Bram-Ernst ;
Bampi, Sergio ;
Van Hoof, Chris ;
Konijnenburg, Mario ;
Verhelst, Marian ;
Van Helleputte, Nick .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2020, 14 (04) :715-726
[8]  
Singha Suvojit Kumar, 2021, Proceedings of 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), P151, DOI 10.1109/ICICT4SD50815.2021.9396849
[9]   TROIKA: A General Framework for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic Signals During Intensive Physical Exercise [J].
Zhang, Zhilin ;
Pi, Zhouyue ;
Liu, Benyuan .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (02) :522-531