Acceleration of generalized replica exchange with solute tempering simulations of large biological systems on massively parallel supercomputer

被引:3
作者
Jung, Jaewoon [1 ,2 ]
Kobayashi, Chigusa [1 ]
Sugita, Yuji [1 ,2 ,3 ]
机构
[1] RIKEN Ctr Computat Sci, Computat Biophys Res Team, 7-1-26 Minatojima Minamimachi, Chuo Ku, Kobe 6500047, Japan
[2] RIKEN Cluster Pioneering Res, Theoret Mol Sci Lab, Saitama, Japan
[3] RIKEN Ctr Biosyst Dynam Res, Lab Biomol Funct Simulat, Kobe, Japan
关键词
biomolecular simulations; enhanced conformational sampling; free energy calculation; high performance computing; MBAR; molecular dynamics; parallel computing; replica-exchange MD; MONTE-CARLO METHOD; MOLECULAR-DYNAMICS SIMULATOR; ENHANCED SAMPLING ALGORITHMS; HYBRID-PARALLEL; GENESIS; IMPLEMENTATION; COMBINATION; PROTEINS; VERSION; CHARMM;
D O I
10.1002/jcc.27124
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Generalized replica exchange with solute tempering (gREST) is one of the enhanced sampling algorithms for proteins or other systems with rugged energy landscapes. Unlike the replica-exchange molecular dynamics (REMD) method, solvent temperatures are the same in all replicas, while solute temperatures are different and are exchanged frequently between replicas for exploring various solute structures. Here, we apply the gREST scheme to large biological systems containing over one million atoms using a large number of processors in a supercomputer. First, communication time on a multi-dimensional torus network is reduced by matching each replica to MPI processors optimally. This is applicable not only to gREST but also to other multi-copy algorithms. Second, energy evaluations, which are necessary for the multistate bennet acceptance ratio (MBAR) method for free energy estimations, are performed on-the-fly during the gREST simulations. Using these two advanced schemes, we observed 57.72 ns/day performance in 128-replica gREST calculations with 1.5 million atoms system using 16,384 nodes in Fugaku. These schemes implemented in the latest version of GENESIS software could open new possibilities to answer unresolved questions on large biomolecular complex systems with slow conformational dynamics.
引用
收藏
页码:1740 / 1749
页数:10
相关论文
共 66 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[3]   High resolution ensemble description of metamorphic and intrinsically disordered proteins using an efficient hybrid parallel tempering scheme [J].
Appadurai, Rajeswari ;
Nagesh, Jayashree ;
Srivastava, Anand .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]   The midpoint method for parallelization of particle simulations [J].
Bowers, Kevin J. ;
Dror, Ron O. ;
Shaw, David E. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (18)
[5]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[6]  
Cervical Cancer Screening (CCS) National Committee for Quality Assurance, ABOUT US
[7]   The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein [J].
Dokainish, Hisham M. ;
Re, Suyong ;
Mori, Takaharu ;
Kobayashi, Chigusa ;
Jung, Jaewoon ;
Sugita, Yuji .
ELIFE, 2022, 11
[8]   Exploring Large Domain Motions in Proteins Using Atomistic Molecular Dynamics with Enhanced Conformational Sampling [J].
Dokainish, Hisham M. ;
Sugita, Yuji .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (01) :1-13
[9]   OpenMM 7: Rapid development of high performance algorithms for molecular dynamics [J].
Eastman, Peter ;
Swails, Jason ;
Chodera, John D. ;
McGibbon, Robert T. ;
Zhao, Yutong ;
Beauchamp, Kyle A. ;
Wang, Lee-Ping ;
Simmonett, Andrew C. ;
Harrigan, Matthew P. ;
Stern, Chaya D. ;
Wiewiora, Rafal P. ;
Brooks, Bernard R. ;
Pande, Vijay S. .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)
[10]   Complete atomistic model of a bacterial cytoplasm for integrating physics, biochemistry, and systems biology [J].
Feig, Michael ;
Harada, Ryuhei ;
Mori, Takaharu ;
Yu, Isseki ;
Takahashi, Koichi ;
Sugita, Yuji .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2015, 58 :1-9