Markov chain;
Longest success run;
Large deviation principle;
D O I:
10.1016/j.spl.2022.109737
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Large deviations for longest success runs L(n) in Markov chains have been previously studied in Liu and Yang (2018) and Liu and Zhu (2020) under a technical assumption p10 < p00 +p11, with pij denoting the transition probability from i to j. In this note, we prove that all the results in Liu and Yang (2018) and Liu and Zhu (2020) still hold even without such an assumption. The main step in the proof is to derive an improved global estimation for the distribution function of L(n) without this assumption, which might be of independent interest. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
机构:
Univ Paris 05, Lab MAP5, UMR CNRS 8145, 45 Rue St Peres, F-75270 Paris 06, FranceUniv Paris 05, Lab MAP5, UMR CNRS 8145, 45 Rue St Peres, F-75270 Paris 06, France
Dedecker, Jerome
Gouezel, Sebastien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nantes, Lab Jean Leray, CNRS UMR 6629, 2 Rue Houssiniere, F-44322 Nantes, FranceUniv Paris 05, Lab MAP5, UMR CNRS 8145, 45 Rue St Peres, F-75270 Paris 06, France
Gouezel, Sebastien
Merlevede, Florence
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Marne La Vallee, LAMA, UMR CNRS 8050, 5 Blvd Descartes, F-77420 Champs Sur Marne, FranceUniv Paris 05, Lab MAP5, UMR CNRS 8145, 45 Rue St Peres, F-75270 Paris 06, France
机构:
Univ Clermont Ferrand, Lab Math Appl, CNRS, UMR 6620, F-63177 Aubiere, FranceUniv Clermont Ferrand, Lab Math Appl, CNRS, UMR 6620, F-63177 Aubiere, France
Djellout, H
Guillin, A
论文数: 0引用数: 0
h-index: 0
机构:
Univ Clermont Ferrand, Lab Math Appl, CNRS, UMR 6620, F-63177 Aubiere, FranceUniv Clermont Ferrand, Lab Math Appl, CNRS, UMR 6620, F-63177 Aubiere, France