Automorphism Groups and Uniqueness of Holomorphic Vertex Operator Algebras of Central Charge 24

被引:6
作者
Betsumiya, Koichi [1 ]
Lam, Ching Hung [2 ]
Shimakura, Hiroki [3 ]
机构
[1] Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki 0368561, Japan
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Tohoku Univ, Grad Sch Informat Sci, Sendai 9808579, Japan
关键词
REPRESENTATIONS; CONSTRUCTION; PRODUCTS; AFFINE;
D O I
10.1007/s00220-022-04585-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the automorphism groups of all holomorphic vertex operator algebras of central charge 24 with non-trivial weight one Lie algebras by using their constructions as simple current extensions. We also confirm a conjecture of G. Hohn on the numbers of holomorphic vertex operator algebras of central charge 24 obtained as inequivalent simple current extensions of certain vertex operator algebras, which gives another proof of the uniqueness of holomorphic vertex operator algebras of central charge 24 with non-trivial weight one Lie algebras.
引用
收藏
页码:1773 / 1810
页数:38
相关论文
共 47 条
[1]  
Betsumiya K., ISR J MATH
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]  
Carnahan S., ARXIV
[5]  
Chen HY, 2018, MATH Z, V288, P75, DOI 10.1007/s00209-017-1878-z
[6]   Orbifold construction and Lorentzian construction of Leech lattice vertex operator algebra [J].
Chigira, Naoki ;
Lam, Ching Hung ;
Miyamoto, Masahiko .
JOURNAL OF ALGEBRA, 2022, 593 :26-71
[7]  
Conway J., 1999, Sphere packings, lattices and groups
[8]  
CONWAY JS, 1985, ALA AGR EXP STA BULL, P1
[9]   SCHUR-WEYL DUALITY FOR HEISENBERG COSETS [J].
Creutzig, T. ;
Kanade, S. ;
Linshaw, A. R. ;
Ridout, D. .
TRANSFORMATION GROUPS, 2019, 24 (02) :301-354
[10]   Gluing vertex algebras [J].
Creutzig, Thomas ;
Kanade, Shashank ;
McRae, Robert .
ADVANCES IN MATHEMATICS, 2022, 396