Decision making for autonomous vehicles in highway scenarios using Harmonic SK Deep SARSA

被引:9
|
作者
Rais, Mohamed Saber [1 ]
Boudour, Rachid [1 ]
Zouaidia, Khouloud [1 ]
Bougueroua, Lamine [2 ]
机构
[1] Badji Mokhtar Univ, Embedded Syst Lab, Annaba, Algeria
[2] Efrei Paris, Allianst Res Lab, Villejuif, France
关键词
Reinforcement learning; Deep learning; Human inspired meta-heuristics; Decision making; Autonomous vehicles;
D O I
10.1007/s10489-022-03357-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The complexity of taking decisions for an autonomous vehicle (AV) to avoid road accident fatalities, provide safety, comfort, and reduce traffic raises the need for improvements in the field of decision making. To solve these challenges, many algorithms and techniques were applied, and the most common ones were reinforcement learning (RL) algorithms combined with deep learning techniques. Therefore, in this paper we proposed a novel extension of the popular "SARSA" (State-Action-Reward-State-Action) RL technique called "Harmonic SK Deep SARSA" that takes advantage of the stability which SARSA algorithm provides and uses the notion of similar and cumulative states saved in an alternative memory to enhance the stability of the algorithm and achieve remarkable performance that SARSA could not accomplish due to its on policy nature. Through the investigation of our novel extension the adaptability of the algorithm to unexpected situations during learning and to unforeseen changes in the environment was proved while reducing the computational load in the learning process and increasing the convergence rate that plays a key role in upgrading decision making application that require numerous real time consecutive decisions, including autonomous vehicles, industrial robots, gaming, aerial navigation... The novel algorithm was tested in a gym environment simulator called "Highway-env" with multiple highway situations (multiple lanes configurations, highway with dynamic number of lanes (from 4-lane to 2-lane, from 4-lane to 6-lane), merge) with numerous dynamic obstacles. For the purpose of comparison, we used a benchmark of cutting edge algorithms known for their prominent performance. The experimental results showed that the proposed algorithm outperformed the comparison algorithms in learning stability and performance that were validated by the following metrics: average loss value per episode, average accuracy per episode, maximum speed value reached per episode, average speed per episode, and the total reward per episode.
引用
收藏
页码:2488 / 2505
页数:18
相关论文
共 50 条
  • [41] Dynamic Policy Evaluation for Ethical Decision-Making in Autonomous Vehicles
    Detjen-Leal, Daniel
    Quijano, Nicanor
    Francisco Rodriguez, Carlos
    2023 IEEE 6TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL, CCAC, 2023, : 136 - 141
  • [42] A Review of Decision-Making and Planning for Autonomous Vehicles in Intersection Environments
    Chen, Shanzhi
    Hu, Xinghua
    Zhao, Jiahao
    Wang, Ran
    Qiao, Min
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (03):
  • [43] Spatial Attention for Autonomous Decision-making in Highway Scene
    Zhang, Shuwei
    Wu, Yutian
    Ogai, Harutoshi
    2020 59TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2020, : 1435 - 1440
  • [44] Towards Safe Decision-Making for Autonomous Vehicles at Unsignalized Intersections
    Yang, Kai
    Li, Shen
    Chen, Yongli
    Cao, Dongpu
    Tang, Xiaolin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 3830 - 3842
  • [45] Robust Lane Change Decision Making for Autonomous Vehicles: An Observation Adversarial Reinforcement Learning Approach
    He, Xiangkun
    Yang, Haohan
    Hu, Zhongxu
    Lv, Chen
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 184 - 193
  • [46] Decision making for autonomous vehicles: Combining safety and optimality
    Verbakel, J. J.
    Fusco, M.
    Willemsen, D. M. C.
    van de Mortel-Fronczak, J. M.
    Heemels, W. P. M. H.
    IFAC PAPERSONLINE, 2020, 53 (02): : 15380 - 15387
  • [47] Deep Reinforcement Learning Based Game-Theoretic Decision-Making for Autonomous Vehicles
    Yuan, Mingfeng
    Shan, Jinjun
    Mi, Kevin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 818 - 825
  • [48] A Rear Anti-Collision Decision-Making Methodology Based on Deep Reinforcement Learning for Autonomous Commercial Vehicles
    Hu, Weiming
    Li, Xu
    Hu, Jinchao
    Song, Xiang
    Dong, Xuan
    Kong, Dong
    Xu, Qimin
    Ren, Chunxiao
    IEEE SENSORS JOURNAL, 2022, 22 (16) : 16370 - 16380
  • [49] Deep reinforcement learning for autonomous vehicles: lane keep and overtaking scenarios with collision avoidance
    Ashwin S.H.
    Naveen Raj R.
    International Journal of Information Technology, 2023, 15 (7) : 3541 - 3553
  • [50] An Integrated Threat Assessment Algorithm for Decision-Making of Autonomous Driving Vehicles
    Xu, Can
    Zhao, Wanzhong
    Wang, Chunyan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (06) : 2510 - 2521