Permutation tests for ASCA in multivariate longitudinal intervention studies

被引:13
作者
Camacho, Jose [1 ]
Diaz, Caridad [2 ]
Sanchez-Rovira, Pedro [3 ]
机构
[1] Univ Granada, Signal Theory Networking & Commun Dept, C Periodista Daniel Saucedo Aranda S-N, Granada 18014, Spain
[2] Fdn MEDINA Ctr Excelencia Invest Medicamentos Inn, Granada 18016, Spain
[3] Univ Hosp Jaen, Med Oncol Unit, Jaen 23007, Spain
关键词
ASCA; longitudinal intervention studies; omics; permutation tests; power analysis; power curves; CHEMOTHERAPY;
D O I
10.1002/cem.3398
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Permutation tests are the standard technique for significance testing in Analysis of Variance Simultaneous Component Analysis. However, there is a vast number of alternative approaches for permutation testing, and the number of choices grows in relation to the complexity of the study design. In this paper, we focus on longitudinal intervention studies with multivariate outcomes, a relevant experimental design in clinical studies where the outcome is an omics profile (such as in genomics, metabolomics, and the like). We propose a new technique to derive power curves tailored to the size and (un)balanced nature of the data set in the study. This technique is useful to identify misleading permutation tests, with lack of power or overly optimistic outcomes. We found that choosing the best permutation approach is far from intuitive and that there is a significant risk of deriving incorrect conclusions in real-life analyses. Our approach avoids this risk and can be extended to other complex designs of interest. The code is available for free use.
引用
收藏
页数:16
相关论文
共 20 条
[1]  
Anderson M.J., 2005, Permanova-Permutational multivariate analysis of variance
[2]  
Anderson M.J., 2017, WILEY STATSREF STAT, P1, DOI [10.1002/9781118445112.stat07841, DOI 10.1002/9781118445112.STAT07841]
[3]   Permutation tests for multi-factorial analysis of variance [J].
Anderson, MJ ;
Ter Braak, CJF .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (02) :85-113
[4]   Neoadjuvant Chemotherapy for Breast Cancer: Past, Present, and Future [J].
Asaoka, Mariko ;
Gandhi, Shipra ;
Ishikawa, Takashi ;
Takabe, Kazuaki .
BREAST CANCER-BASIC AND CLINICAL RESEARCH, 2020, 14
[5]   On the generation of random multivariate data [J].
Camacho, Jose .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 160 :40-51
[6]   Neoadjuvant Management of Early Breast Cancer: A Clinical and Investigational Position Statement [J].
Colomer, Ramon ;
Saura, Cristina ;
Sanchez-Rovira, Pedro ;
Pascual, Tomas ;
Rubio, Isabel T. ;
Burgues, Octavio ;
Marcos, Lourdes ;
Rodriguez, Cesar A. ;
Martin, Miguel ;
Lluch, Ana .
ONCOLOGIST, 2019, 24 (05) :603-611
[7]   Predicting dynamic response to neoadjuvant chemotherapy in breast cancer: a novel metabolomics approach [J].
Diaz, Caridad ;
Gonzalez-Olmedo, Carmen ;
Diaz-Beltran, Leticia ;
Camacho, Jose ;
Mena Garcia, Patricia ;
Martin-Blazquez, Ariadna ;
Fernandez-Navarro, Monica ;
Ortega-Granados, Ana Laura ;
Galvez-Montosa, Fernando ;
Marchal, Juan Antonio ;
Vicente, Francisca ;
Perez del Palacio, Jose ;
Sanchez-Rovira, Pedro .
MOLECULAR ONCOLOGY, 2022, 16 (14) :2658-2671
[8]  
Fisusi Funmilola A., 2019, Pharmaceutical Nanotechnology, V7, P3, DOI [10.2174/2211738507666190122111224, 10.2174/2211738507666190122111224]
[9]   ASCA: analysis of multivariate data obtained from an experimental design [J].
Jansen, JJ ;
Hoefsloot, HCJ ;
van der Greef, J ;
Timmerman, ME ;
Westerhuis, JA ;
Smilde, AK .
JOURNAL OF CHEMOMETRICS, 2005, 19 (09) :469-481
[10]   Repeated measures ASCA plus for analysis of longitudinal intervention studies with multivariate outcome data [J].
Madssen, Torfinn S. ;
Giskeodegard, Guro F. ;
Smilde, Age K. ;
Westerhuis, Johan A. .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (11)