EODIE-Earth Observation Data Information Extractor

被引:2
|
作者
Wittke, Samantha [1 ,2 ]
Fouilloux, Anne [3 ]
Lehti, Petteri [2 ,4 ]
Varho, Juuso [2 ,4 ]
Kivimaki, Arttu [2 ]
Karhu, Maiju [2 ]
Karjalainen, Mika [2 ]
Vaaja, Matti [1 ]
Puttonen, Eetu [2 ]
机构
[1] Aalto Univ, Dept Built Environm, Espoo, Finland
[2] Natl Land Survey Finland, Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Helsinki, Finland
[3] Univ Oslo, Dept Geosci, Oslo, Norway
[4] Aalto Univ, Dept Appl Phys, Espoo, Finland
基金
芬兰科学院;
关键词
Remote sensing; Big data processing; Earth observation; Open-source software; DIFFERENCE WATER INDEX; VEGETATION INDEX; WORLDVIEW-2; IMAGERY; PHENOLOGY; FOREST; NDWI; LEAF; DERIVATION; PROGRAM; RED;
D O I
10.1016/j.softx.2023.101421
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Remote sensing satellites provide a vast amount of data to monitor and observe Earth's surface and events on it. To use these data efficiently in subsequent analysis and decision-making, highly automated easy-to-use tools are needed. Here, we present Earth Observation Data Information Extractor (EODIE). EODIE is a toolkit to extract object-level time-series information from several multispectral satellite remote sensing platforms and to produce analysis-ready products for subsequent data analysis. EODIE has a modular design that makes it adjustable for end-user requirements. Users have a possibility to exchange and add modules in EODIE for flexible processing in different computing environments. With EODIE, remote sensing data can be processed to object level array, geotiff or statistics information of different (vegetation) indices or plain wavelength intervals. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Flood Modeling and Prediction Using Earth Observation Data
    Schumann, Guy
    Giustarini, Laura
    Tarpanelli, Angelica
    Jarihani, Ben
    Martinis, Sandro
    SURVEYS IN GEOPHYSICS, 2023, 44 (05) : 1553 - 1578
  • [42] On the semantics of big Earth observation data for land classification
    Camara, Gilberto
    JOURNAL OF SPATIAL INFORMATION SCIENCE, 2020, (20): : 21 - 34
  • [43] Recent advance in earth observation big data for hydrology
    Chen, Lajiao
    Wang, Lizhe
    BIG EARTH DATA, 2018, 2 (01) : 86 - 107
  • [44] Use of earth observation data for applications in public health
    Weng, Qihao
    Xu, Bing
    Hu, Xuefei
    Liu, Hua
    GEOCARTO INTERNATIONAL, 2014, 29 (01) : 3 - 16
  • [45] MERGING EARTH OBSERVATION DATA, WEATHER PREDICTIONS, IN-SITU MEASUREMENTS AND HYDROLOGICAL MODELS FOR WATER INFORMATION SERVICES
    Hartanto, Isnaeni M.
    Almeida, Carina
    Alexandridis, Thomas K.
    Weynants, Melanie
    Timoteo, Gildo
    Chambel-Leitao, Pedro
    Araujo, Antonio M. S.
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2015, 14 (09): : 2031 - 2042
  • [46] Flood Modeling and Prediction Using Earth Observation Data
    Guy Schumann
    Laura Giustarini
    Angelica Tarpanelli
    Ben Jarihani
    Sandro Martinis
    Surveys in Geophysics, 2023, 44 : 1553 - 1578
  • [47] Earth-Observation-Based Monitoring of Forests in Germany-Recent Progress and Research Frontiers: A Review
    Holzwarth, Stefanie
    Thonfeld, Frank
    Kacic, Patrick
    Abdullahi, Sahra
    Asam, Sarah
    Coleman, Kjirsten
    Eisfelder, Christina
    Gessner, Ursula
    Huth, Juliane
    Kraus, Tanja
    Shatto, Christopher
    Wessel, Birgit
    Kuenzer, Claudia
    REMOTE SENSING, 2023, 15 (17)
  • [48] Ecosystem Resilience Monitoring and Early Warning Using Earth Observation Data: Challenges and Outlook
    Bathiany, Sebastian
    Bastiaansen, Robbin
    Bastos, Ana
    Blaschke, Lana
    Lever, Jelle
    Loriani, Sina
    De Keersmaecker, Wanda
    Dorigo, Wouter
    Milenkovic, Milutin
    Senf, Cornelius
    Smith, Taylor
    Verbesselt, Jan
    Boers, Niklas
    SURVEYS IN GEOPHYSICS, 2024, 46 (2) : 265 - 301
  • [49] Spectral and petrophysical data for filling in thematic database in Earth observation over test site
    Borisova, Denitsa
    Goranova, Margarita
    Hristova, Valentina
    Avetisyan, Daniela
    Kisyov, Atanas
    SEVENTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2019), 2019, 11174
  • [50] Benefits of global earth observation missions for disaggregation of exposure data and earthquake loss modeling: evidence from Santiago de Chile
    Geiss, Christian
    Priesmeier, Peter
    Pelizari, Patrick Aravena
    Calderon, Angelica Rocio Soto
    Schoepfer, Elisabeth
    Riedlinger, Torsten
    Vega, Mabe Villar
    Santa Maria, Hernan
    Gomez Zapata, Juan Camilo
    Pittore, Massimiliano
    So, Emily
    Fekete, Alexander
    Taubenbock, Hannes
    NATURAL HAZARDS, 2023, 119 (02) : 779 - 804