EODIE-Earth Observation Data Information Extractor

被引:2
|
作者
Wittke, Samantha [1 ,2 ]
Fouilloux, Anne [3 ]
Lehti, Petteri [2 ,4 ]
Varho, Juuso [2 ,4 ]
Kivimaki, Arttu [2 ]
Karhu, Maiju [2 ]
Karjalainen, Mika [2 ]
Vaaja, Matti [1 ]
Puttonen, Eetu [2 ]
机构
[1] Aalto Univ, Dept Built Environm, Espoo, Finland
[2] Natl Land Survey Finland, Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Helsinki, Finland
[3] Univ Oslo, Dept Geosci, Oslo, Norway
[4] Aalto Univ, Dept Appl Phys, Espoo, Finland
基金
芬兰科学院;
关键词
Remote sensing; Big data processing; Earth observation; Open-source software; DIFFERENCE WATER INDEX; VEGETATION INDEX; WORLDVIEW-2; IMAGERY; PHENOLOGY; FOREST; NDWI; LEAF; DERIVATION; PROGRAM; RED;
D O I
10.1016/j.softx.2023.101421
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Remote sensing satellites provide a vast amount of data to monitor and observe Earth's surface and events on it. To use these data efficiently in subsequent analysis and decision-making, highly automated easy-to-use tools are needed. Here, we present Earth Observation Data Information Extractor (EODIE). EODIE is a toolkit to extract object-level time-series information from several multispectral satellite remote sensing platforms and to produce analysis-ready products for subsequent data analysis. EODIE has a modular design that makes it adjustable for end-user requirements. Users have a possibility to exchange and add modules in EODIE for flexible processing in different computing environments. With EODIE, remote sensing data can be processed to object level array, geotiff or statistics information of different (vegetation) indices or plain wavelength intervals. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Earth Observation based Crisis Information - Emergency mapping services and recent operational developments
    Lechner, Konstanze
    Gaehler, Monika
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR DISASTER MANAGEMENT (ICT-DM), 2017,
  • [32] Satellite Earth observation data to identify anthropogenic pressures in selected protected areas
    Nagendra, Harini
    Mairota, Paola
    Marangi, Carmela
    Lucas, Richard
    Dimopoulos, Panayotis
    Honrado, Joao Pradinho
    Niphadkar, Madhura
    Mucher, Caspar A.
    Tomaselli, Valeria
    Panitsa, Maria
    Tarantino, Cristina
    Manakos, Ioannis
    Blonda, Palma
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 37 : 124 - 132
  • [33] Assimilation of Earth Observation Data for Crop Yield Estimation in Smallholder Agricultural Systems
    Sisheber, Biniam
    Marshall, Michael
    Mengistu, Daniel
    Nelson, Andrew
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 557 - 572
  • [34] Earth Observation Data Supporting Non-Communicable Disease Research: A Review
    Sogno, Patrick
    Traidl-Hoffmann, Claudia
    Kuenzer, Claudia
    REMOTE SENSING, 2020, 12 (16)
  • [35] CDCEO'21-First Workshop on Complex Data Challenges in Earth Observation
    Gruca, Aleksandra
    Herruzo, Pedro
    Ripodas, Pilar
    Kucik, Andrzej
    Briese, Christian
    Kopp, Michael K.
    Hochreiter, Sepp
    Ghamisi, Pedram
    Kreil, David P.
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4878 - 4879
  • [36] Earth Observation Based Monitoring of Forests in Germany: A Review
    Holzwarth, Stefanie
    Thonfeld, Frank
    Abdullahi, Sahra
    Asam, Sarah
    Canova, Emmanuel Ponte
    Gessner, Ursula
    Huth, Juliane
    Kraus, Tanja
    Leutner, Benjamin
    Kuenzer, Claudia
    REMOTE SENSING, 2020, 12 (21) : 1 - 43
  • [37] Expanding the Algorithmic Information Theory Frame for Applications to Earth Observation
    Cerra, Daniele
    Datcu, Mihai
    ENTROPY, 2013, 15 (01): : 407 - 415
  • [38] Gaussianizing the Earth: Multidimensional Information Measures for Earth Data Analysis
    Emmanuel Johnson, J.
    Laparra, Valero
    Piles, Maria
    Camps-Valls, Gustau
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (04) : 191 - 208
  • [39] Earth observation satellite data receiving, processing system and data sharing
    Guo, Huadong
    Liu, Jianbo
    Li, An
    Zhang, Jianguo
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2012, 5 (03) : 241 - 250
  • [40] There Are No Data Like More Data: Datasets for deep learning in Earth observation
    Schmitt, Michael
    Ahmadi, Seyed Ali
    Xu, Yonghao
    Taskin, Gulsen
    Verma, Ujjwal
    Sica, Francescopaolo
    Haensch, Ronny
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2023, 11 (03) : 63 - 97