EODIE-Earth Observation Data Information Extractor

被引:2
|
作者
Wittke, Samantha [1 ,2 ]
Fouilloux, Anne [3 ]
Lehti, Petteri [2 ,4 ]
Varho, Juuso [2 ,4 ]
Kivimaki, Arttu [2 ]
Karhu, Maiju [2 ]
Karjalainen, Mika [2 ]
Vaaja, Matti [1 ]
Puttonen, Eetu [2 ]
机构
[1] Aalto Univ, Dept Built Environm, Espoo, Finland
[2] Natl Land Survey Finland, Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Helsinki, Finland
[3] Univ Oslo, Dept Geosci, Oslo, Norway
[4] Aalto Univ, Dept Appl Phys, Espoo, Finland
基金
芬兰科学院;
关键词
Remote sensing; Big data processing; Earth observation; Open-source software; DIFFERENCE WATER INDEX; VEGETATION INDEX; WORLDVIEW-2; IMAGERY; PHENOLOGY; FOREST; NDWI; LEAF; DERIVATION; PROGRAM; RED;
D O I
10.1016/j.softx.2023.101421
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Remote sensing satellites provide a vast amount of data to monitor and observe Earth's surface and events on it. To use these data efficiently in subsequent analysis and decision-making, highly automated easy-to-use tools are needed. Here, we present Earth Observation Data Information Extractor (EODIE). EODIE is a toolkit to extract object-level time-series information from several multispectral satellite remote sensing platforms and to produce analysis-ready products for subsequent data analysis. EODIE has a modular design that makes it adjustable for end-user requirements. Users have a possibility to exchange and add modules in EODIE for flexible processing in different computing environments. With EODIE, remote sensing data can be processed to object level array, geotiff or statistics information of different (vegetation) indices or plain wavelength intervals. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] COMPARISON OF QUANTUM NEURAL NETWORK ALGORITHMS FOR EARTH OBSERVATION DATA CLASSIFICATION
    van Waveren, Matthijs
    Savinaud, Mickael
    Pasero, Guillaume
    Defonte, Veronique
    Brunet, Pierre-Marie
    Faucoz, Orphee
    Gawron, Piotr
    Gardas, Bartlomiej
    Puchala, Zbigniew
    Pawela, Lukasz
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 780 - 783
  • [22] Federated Catalogue for Discovering Earth Observation Data
    Shao, Yuanzheng
    Di, Liping
    Bai, Yuqi
    Kang, Lingjun
    Wang, Huilin
    Yang, Chao
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2013, (01): : 43 - 52
  • [23] An integrated view of data quality in Earth observation
    Yang, X.
    Blower, J. D.
    Bastin, L.
    Lush, V.
    Zabala, A.
    Maso, J.
    Cornford, D.
    Diaz, P.
    Lumsden, J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1983):
  • [24] Satellite Earth Observation and National Data Regulation
    Harris, Ray
    Baumann, Ingo
    SPACE POLICY, 2021, 56
  • [25] Earth Observation Data Processing in Distributed Systems
    Dana, Petcu
    Silviu, Panica
    Marian, Neagul
    Marc, Frincu
    Daniela, Zaharie
    Radu, Ciorba
    Adrian, Dinis
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2010, 34 (04): : 463 - 476
  • [26] Data assimilation: making sense of Earth Observation
    Lahoz, William A.
    Schneider, Philipp
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2014, 2
  • [27] Transparent Earth-Observing: Exploring the new generation of Earth observation technology
    Zhou X.
    Pan J.
    Wu Y.
    National Remote Sensing Bulletin, 2024, 28 (03) : 529 - 540
  • [28] Multisensor Earth observation systems: data fusion
    Atanassov, Valentin
    Borisova, Denitsa
    Petkov, Doyno
    Dimitrov, Ventzeslav
    Vasileva, Hristina
    Goranova, Margarita
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XXII, 2018, 10785
  • [29] Open data policies and satellite Earth observation
    Harris, Ray
    Baumann, Ingo
    SPACE POLICY, 2015, 32 : 44 - 53
  • [30] Development and trend of Earth observation data sharing
    Li G.
    Zhang H.
    Zhang L.
    Wang Y.
    Tian C.
    1600, Science Press (20): : 979 - 990