Detection of potential gas accumulations in 2D seismic images using spatio-temporal, PSO, and convolutional LSTM approaches

被引:7
作者
Dias Jr, Domingos Alves [1 ]
da Cruz, Luana Batista [2 ]
Diniz, Joao Otavio Bandeira [1 ,3 ]
Silva, Aristofanes Correa [1 ]
de Paiva, Anselmo Cardoso [1 ]
Gattass, Marcelo [5 ]
Rodriguez, Carlos [5 ]
Quispe, Roberto [5 ]
Ribeiro, Roberto [4 ]
Riguete, Vinicius [4 ]
机构
[1] Univ Fed Maranhao, SN, Campus Bacanga, Ave Portugueses, BR-65085580 Sao Luis, MA, Brazil
[2] Fed Inst Cariri, Ave Tenente Raimundo Rocha,N 1639, BR-63048080 Juazeiro do Norte, CE, Brazil
[3] Fed Inst Maranha, 226, Grajau,Vila Nova,Campus Grajau, BR-6594000 Maranhao, MA, Brazil
[4] ENEVA SA Rio Janeiro, Rio De Janeiro, Brazil
[5] Pontif Catholic Univ Rio Janeiro, R Sao Vicente,225,Gavea, BR-22453900 Rio De Janeiro, RJ, Brazil
关键词
Seismic Data; Spatio-temporal; ConvLSTM; Parna?ba Basin; Particle Swarm Optimization; Direct Hydrocarbon Indicators;
D O I
10.1016/j.eswa.2022.119337
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Seismic reflection is one of the most widely used geophysical methods in the oil and gas (O&G) industry for hydrocarbon prospecting. In particular, for some Brazilian onshore fields, this method has been used to estimate the location and volume of gas accumulations. However, the analysis and interpretation of seismic data are time-consuming due to the large amount of information and noisy nature of the acquisitions. To help geoscientists with these tasks, computational tools based on machine learning have been proposed considering direct hy-drocarbon indicators. In this study, we present a methodology for detecting gas accumulation based on the convolutional long short-term memory model and particle swarm optimization scheme. In the best scenario, the proposed method achieved an F1-score of 84.22%, sensitivity of 98.06%, specificity of 99.44%, and accuracy of 99.42%. We present tests performed on the Parnaiba Basin, indicating that the proposed method is promising for gas exploration.
引用
收藏
页数:11
相关论文
共 61 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Abraham E., 2019, 2019 GLOB C ADV TECH, P1, DOI [10.1109/gcat47503.2019.8978343, DOI 10.1109/GCAT47503.2019.8978343]
[3]  
Ali P.J.M., 2014, Mach Learn Tech Rep, V1, P1, DOI [10.13140/RG.2.2.28948.04489, DOI 10.13140/RG.2.2.28948.04489]
[4]  
Almeida F. d., 2004, INUNDACOES MARINHAS, P43
[5]  
Andrade F., 2021, 1 INT M APPL GEOSCIE, P1651
[6]  
[Anonymous], 2016, P IEEE CVPR
[7]  
Araya-Polo Mauricio, 2017, Leading Edge, V36, P208, DOI 10.1190/tle360300208.1
[8]   An automatic approach for heart segmentation in CT scans through image processing techniques and Concat-U-Net [J].
Bandeira Diniz, Joao Otavio ;
Ferreira, Jonnison Lima ;
Carmona Cortes, Omar Andres ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 196
[9]  
Baptista M., 2016, Fundamentos de Engenharia hidraulica, V4
[10]  
Bensaid S., 2022, SCIOPS 2022 ARTIFICI, P15