Multimodal prediction of residual consciousness in the intensive care unit: the CONNECT-ME study

被引:47
作者
Amiri, Moshgan [1 ]
Fisher, Patrick M. [2 ]
Raimondo, Federico [3 ,4 ]
Sidaros, Annette [1 ,5 ]
Hribljan, Melita Cacic [5 ]
Othman, Marwan H. [1 ]
Zibrandtsen, Ivan [5 ]
Albrechtsen, Simon A. [1 ]
Bergdal, Ove [6 ]
Hansen, Adam Espe [7 ,8 ]
Hassager, Christian [8 ,9 ]
Hojgaard, Joan Lilja S. [1 ]
Jakobsen, Elisabeth Waldemar [1 ]
Jensen, Helene Ravnholt [10 ]
Moller, Jacob [9 ]
Nersesjan, Vardan [1 ,11 ]
Nikolic, Miki [5 ]
Olsen, Markus Harboe [10 ]
Sigurdsson, Sigurdur Thor [10 ]
Sitt, Jacobo D. [12 ]
Solling, Christine [10 ]
Welling, Karen Lise [10 ]
Willumsen, Lisette M. [6 ]
Hauerberg, John [6 ]
Larsen, Vibeke Andree [7 ]
Fabricius, Martin Ejler [5 ,8 ]
Knudsen, Gitte Moos [2 ,8 ]
Kjaergaard, Jesper [8 ,9 ]
Moller, Kirsten [8 ,10 ]
Kondziella, Daniel [1 ,8 ]
机构
[1] Copenhagen Univ Hosp, Rigshosp, Dept Neurol, Copenhagen, Denmark
[2] Copenhagen Univ Hosp, Rigshosp, Neurobiol Res Unit, Copenhagen, Denmark
[3] Res Ctr Julich, Inst Neurosci & Med Brain & Behav INM 7, Julich, Germany
[4] Heinrich Heine Univ Dusseldorf, Med Fac, Inst Syst Neurosci, Dusseldorf, Germany
[5] Copenhagen Univ Hosp, Rigshosp, Dept Neurophysiol, Copenhagen, Denmark
[6] Copenhagen Univ Hosp, Rigshosp, Dept Neurosurg, Copenhagen, Denmark
[7] Copenhagen Univ Hosp, Rigshosp, Dept Radiol, Copenhagen, Denmark
[8] Univ Copenhagen, Dept Clin Med, Copenhagen, Denmark
[9] Copenhagen Univ Hosp, Rigshosp, Dept Cardiol, Copenhagen, Denmark
[10] Copenhagen Univ Hosp, Rigshosp, Dept Neuroanaesthesiol, Copenhagen, Denmark
[11] Copenhagen Univ Hosp, Copenhagen Res Ctr Mental Hlth, Biol & Precis Psychiat, Copenhagen, Denmark
[12] Sorbonne Univ, Hop Pitie Salpetriere, AP HP, Inst Cerveau,Paris Brain Inst ICM,INSERM,CNRS, Paris, France
关键词
acute brain injury; disorders of consciousness; EEG; functional MRI; machine-learning; TRAUMATIC BRAIN-INJURY; EEG; DISORDERS; SCALE; WITHDRAWAL; PATTERNS; NETWORK; LEVEL;
D O I
10.1093/brain/awac335
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Functional MRI (fMRI) and EEG may reveal residual consciousness in patients with disorders of consciousness (DoC), as reflected by a rapidly expanding literature on chronic DoC. However, acute DoC is rarely investigated, although identifying residual consciousness is key to clinical decision-making in the intensive care unit (ICU). Therefore, the objective of the prospective, observational, tertiary centre cohort, diagnostic phase IIb study 'Consciousness in neurocritical care cohort study using EEG and fMRI' (CONNECT-ME, NCT02644265) was to assess the accuracy of fMRI and EEG to identify residual consciousness in acute DoC in the ICU. Between April 2016 and November 2020, 87 acute DoC patients with traumatic or non-traumatic brain injury were examined with repeated clinical assessments, fMRI and EEG. Resting-state EEG and EEG with external stimulations were evaluated by visual analysis, spectral band analysis and a Support Vector Machine (SVM) consciousness classifier. In addition, within- and between-network resting-state connectivity for canonical resting-state fMRI networks was assessed. Next, we used EEG and fMRI data at study enrolment in two different machine-learning algorithms (Random Forest and SVM with a linear kernel) to distinguish patients in a minimally conscious state or better (>= MCS) from those in coma or unresponsive wakefulness state (<= UWS) at time of study enrolment and at ICU discharge (or before death). Prediction performances were assessed with area under the curve (AUC). Of 87 DoC patients (mean age, 50.0 +/- 18 years, 43% female), 51 (59%) were <= UWS and 36 (41%) were >= MCS at study enrolment. Thirty-one (36%) patients died in the ICU, including 28 who had life-sustaining therapy withdrawn. EEG and fMRI predicted consciousness levels at study enrolment and ICU discharge, with maximum AUCs of 0.79 (95% CI 0.77-0.80) and 0.71 (95% CI 0.77-0.80), respectively. Models based on combined EEG and fMRI features predicted consciousness levels at study enrolment and ICU discharge with maximum AUCs of 0.78 (95% CI 0.71-0.86) and 0.83 (95% CI 0.75-0.89), respectively, with improved positive predictive value and sensitivity. Overall, both machine-learning algorithms (SVM and Random Forest) performed equally well. In conclusion, we suggest that acute DoC prediction models in the ICU be based on a combination of fMRI and EEG features, regardless of the machine-learning algorithm used.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 64 条
[11]   Functional Networks in Disorders of Consciousness [J].
Bodien, Yelena G. ;
Chatelle, Camille ;
Edlow, Brian L. .
SEMINARS IN NEUROLOGY, 2017, 37 (05) :485-502
[12]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[13]  
Bruno Marie-Aurelie, 2013, Handb Clin Neurol, V118, P205, DOI 10.1016/B978-0-444-53501-6.00017-2
[14]   From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness [J].
Bruno, Marie-Aurelie ;
Vanhaudenhuyse, Audrey ;
Thibaut, Aurore ;
Moonen, Gustave ;
Laureys, Steven .
JOURNAL OF NEUROLOGY, 2011, 258 (07) :1373-1384
[15]   Detection of Brain Activation in Unresponsive Patients with Acute Brain Injury [J].
Claassen, Jan ;
Doyle, Kevin ;
Matory, Adu ;
Couch, Caroline ;
Burger, Kelly M. ;
Velazquez, Angela ;
Okonkwo, Joshua U. ;
King, Jean-Remi ;
Park, Soojin ;
Agarwal, Sachin ;
Roh, David ;
Megjhani, Murad ;
Eliseyev, Andrey ;
Connolly, E. Sander ;
Rohaut, Benjamin .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (26) :2497-2505
[16]   Advances and pitfalls in the analysis and interpretation of resting-state FMRI data [J].
Cole, David M. ;
Smith, Stephen M. ;
Beckmann, Christian F. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2010, 4
[17]  
DASAIM, 2020, GUIDEL DANSK SELSK A, V3, P1
[18]   Human consciousness is supported by dynamic complex patterns of brain signal coordination [J].
Demertzi, A. ;
Tagliazucchi, E. ;
Dehaene, S. ;
Deco, G. ;
Barttfeld, P. ;
Raimondo, F. ;
Martial, C. ;
Fernandez-Espejo, D. ;
Rohaut, B. ;
Voss, H. U. ;
Schiff, N. D. ;
Owen, A. M. ;
Laureys, S. ;
Naccache, L. ;
Sitt, J. D. .
SCIENCE ADVANCES, 2019, 5 (02)
[19]   Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients [J].
Demertzi, Athena ;
Antonopoulos, Georgios ;
Heine, Lizette ;
Voss, Henning U. ;
Crone, Julia Sophia ;
de Los Angeles, Carlo ;
Bahri, Mohamed Ali ;
Di Perri, Carol ;
Vanhaudenhuyse, Audrey ;
Charland-Verville, Vanessa ;
Kronbichler, Martin ;
Trinka, Eugen ;
Phillips, Christophe ;
Gomez, Francisco ;
Tshibanda, Luaba ;
Soddu, Andrea ;
Schiff, Nicholas D. ;
Whitfield-Gabrieli, Susan ;
Laureys, Steven .
BRAIN, 2015, 138 :2619-2631
[20]   Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study [J].
Di Perri, Carol ;
Bahri, Mohamed Ali ;
Amico, Enrico ;
Thibaut, Aurore ;
Heine, Lizette ;
Antonopoulos, Georgios ;
Charland-Verville, Vanessa ;
Wannez, Sarah ;
Gomez, Francisco ;
Hustinx, Roland ;
Tshibanda, Luaba ;
Demertzi, Athena ;
Soddu, Andrea ;
Laureys, Steven .
LANCET NEUROLOGY, 2016, 15 (08) :830-842