Using fuzzy and machine learning iterative optimized models to generate the flood susceptibility maps: case study of Prahova River basin, Romania

被引:6
|
作者
Costache, Romulus [1 ,2 ,3 ,4 ]
Abdo, Hazem Ghassan [5 ]
Mishra, Arun Pratap [6 ,7 ]
Pal, Subodh Chandra [8 ]
Islam, Abu Reza Md. Towfiqul [9 ,10 ]
Pande, Chaitanya B. [11 ,12 ]
Almohamad, Hussein [13 ]
Al Dughairi, Ahmed Abdullah [13 ]
Albanai, Jasem A. [14 ]
机构
[1] Univ Bucharest, Res Inst, Bucharest, Romania
[2] Transilvania Univ Brasov, Dept Civil Engn, Brasov, Romania
[3] Danube Delta Natl Inst Res & Dev, Dept Ecol Restorat & Species Recovery, Tulcea, Romania
[4] Natl Inst Hydrol & Water Management, Dept Hydrol Forecasting, Bucharest, Romania
[5] Tartous Univ, Fac Arts & Humanities, Geog Dept, Tartous, Syria
[6] Wildlife Inst India, Dept Habitat Ecol, Dehra Dun, Uttarakhand, India
[7] Bhomya Fdn, Monal Enclave, Dehra Dun, Uttarakhand, India
[8] Univ Burdwan, Dept Geog, Purba Bardhaman, West Bengal, India
[9] Begum Rokeya Univ, Dept Disaster Management, Rangpur, Bangladesh
[10] Daffodil Int Univ, Dept Dev Studies, Dhaka, Bangladesh
[11] Al Ayen Univ, Sci Res Ctr, New Era & Dev Civil Engn Res Grp, Thi Qar, Nasiriyah, Iraq
[12] Indian Inst Trop Meteorol, Dept Air Pollut Transport Modeling & Middle Atmosp, Pune, India
[13] Qassim Univ, Coll Arab Language & Social Studies, Dept Geog, Buraydah, Saudi Arabia
[14] Environm Publ Author, Water Qual Monitoring Dept, Marine Monitoring Sect, Salmia, Kuwait
关键词
Prahova river basin; machine learning; hybrid models; flood susceptibility; risk assessment; ARTIFICIAL-INTELLIGENCE; BIVARIATE STATISTICS; SPATIAL PREDICTION;
D O I
10.1080/19475705.2023.2281241
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this work, the vulnerability to flooding in the Prahova River basin was calculated and analyzed using advanced methods and techniques. Thus, 2 hybrid models represented by Iterative Classifier Optimizer - Multiclass Alternating Decision Tree - Certainty Factor (ICO-LADT-CF) and Fuzzy-Analytical Hierarchy Process - Certainty Factor (FAHP-CF) were generated, which had as input data the values of 10 flood predictors and a number of 158 points where historical floods occurred. In the first step, the Certainty Factor values were calculated, which were then used in the Fuzzy-Analytical Hierarchy Process and Multiclass Alternating Decision Tree models. It should be mentioned that the Multiclass Alternating Decision Tree model was optimized with the help of the Iterative Classifier Optimizer. In the case of both ensemble models the slope angle was the most important flood conditioning factor. Moreover, according to Certainty Factor modelling the 8 classes/categories achieved the maximum value of 1. Next, the susceptibility to floods on the surface of the study area was derived. On average, about 20% of the study area has areas with high and medium susceptibility to flash floods. After evaluating the quality of the models through Receiver Operating Characteristics (ROC) Curve, the following results emerged: Success Rate for Flood Potential Index (FPI) Iterative Classifier Optimizer - Multiclass Alternating Decision Tree - Certainty Factor (ICO-LADT-CF) (Area Under Curve = 0.985) and Flood Potential Index (FPI) Fuzzy-Analytical Hierarchy Process - Certainty Factor (FAHP-CF) (Area Under Curve = 0.967); Prediction Rate for Flood Potential Index (FPI) Iterative Classifier Optimizer - Multiclass Alternating Decision Tree - Certainty Factor (ICO-LADT-CF) (Area Under Curve = 0.952) and Flood Potential Index Fuzzy-Analytical Hierarchy Process - Certainty Factor (FAHP-CF) (Area Under Curve = 0.913). At the same time, the accuracies of the models were: Training dataset - 0.943 (Iterative Classifier Optimizer - Multiclass Alternating Decision Tree - Certainty Factor) and 0.931 (Fuzzy-Analytical Hierarchy Process - Certainty Factor); Validating dataset - 0.935 (Iterative Classifier Optimizer - Multiclass Alternating Decision Tree - Certainty Factor) and 0.926 (Fuzzy-Analytical Hierarchy Process - Certainty Factor). As main conclusion, it can be mentioned that the 2 ensemble models outperform the previous machine learning models applied on the same study area before.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Estimation of Potential Evapotranspiration in the Yellow River Basin Using Machine Learning Models
    Liu, Jie
    Yu, Kunxia
    Li, Peng
    Jia, Lu
    Zhang, Xiaoming
    Yang, Zhi
    Zhao, Yang
    ATMOSPHERE, 2022, 13 (09)
  • [42] Flood Stage Forecasting Using Machine-Learning Methods: A Case Study on the Parma River (Italy)
    Dazzi, Susanna
    Vacondio, Renato
    Mignosa, Paolo
    WATER, 2021, 13 (12)
  • [43] Establishment of flood damage function models: A case study in the Bago River Basin, Myanmar
    Win, Shelly
    Zin, Win Win
    Kawasaki, Akiyuki
    San, Zin Mar Lar Tin
    INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2018, 28 : 688 - 700
  • [45] Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management
    Romulus Costache
    Water Resources Management, 2019, 33 : 3239 - 3256
  • [46] Correction to: Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination
    Hamid Reza Pourghasemi
    Soheila Pouyan
    Mojgan Bordbar
    Foroogh Golkar
    John J. Clague
    Natural Hazards, 2023, 118 : 871 - 874
  • [47] Developing Flood Inundation Map Using RRI and SOBEK Models: A Case Study of the Bago River Basin, Myanmar
    San, Zin Mar Lar Tin
    Zin, Win Win
    Kawasaki, Akiyuki
    Acierto, Ralph Allen
    Oo, Tin Zar
    JOURNAL OF DISASTER RESEARCH, 2020, 15 (03) : 277 - 287
  • [48] Flood monitoring using GIS technologies: A case study of the Selenga River basin
    Beshentsev, A. N.
    Borisova, T. A.
    INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE IN COMMEMORATION OF CORR. MEM., RAS, A.N. ANTIPOV GEOGRAPHICAL FOUNDATIONS AND ECOLOGICAL PRINCIPLES OF THE REGIONAL POLICY OF NATURE MANAGEMENT, 2019, 381
  • [49] Comparative assessment of landslide susceptibility. Case study: the Niraj river basin (Transylvania depression, Romania)
    Rosca, Sanda
    Bilasco, Stefan
    Petrea, Danut
    Vescan, Iuliu
    Fodorean, Ioan
    GEOMATICS NATURAL HAZARDS & RISK, 2016, 7 (03) : 1043 - 1064
  • [50] Leveraging machine learning and open-source spatial datasets to enhance flood susceptibility mapping in transboundary river basin
    Bhattarai, Yogesh
    Duwal, Sunil
    Sharma, Sanjib
    Talchabhadel, Rocky
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)