Wave height classification via deep learning using monoscopic ocean videos

被引:3
|
作者
Kim, Yun-Ho [1 ,2 ]
Cho, Seongpil [3 ]
Lee, Phill-Seung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Res Inst Ships & Ocean Engn, Alternat Fuels & Power Syst Res Ctr, 32 Yuseong Daero, Daejeon 34103, South Korea
[3] Korea Aerosp Univ, Sch Aerosp & Mech Engn, 76 Gonghangdaehak Ro, Goyang Si 10540, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
Ocean environment classification; Average wave height; Deep learning; Convolutional neural network; Long short-term memory; Sequential images;
D O I
10.1016/j.oceaneng.2023.116002
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The ocean environment has a significant influence on aquaculture, marine transportation, and the construction of coastal and offshore structures. In this regard, we describe a deep-learning based wave height classification method using monoscopic ocean videos. Images and videos as input for learning were obtained using a monoscopic camera, and the wave height was measured using an acoustic Doppler current profiler installed in the southwestern area of Korea. Initially, the sea states and average wave height were classified from single snapshots using only a convolutional neural network (CNN). Subsequently, the average wave height was classified from sequential snapshots using a combined deep learning algorithm with long short-term memory (LSTM) and CNN. The combined network with an appropriate data augmentation was found to be effective and showed good performance. The proposed method can be applied in future studies to identify a wider range of wave heights and wave breaking phenomena.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Prediction of significant wave height based on EEMD and deep learning
    Song, Tao
    Wang, Jiarong
    Huo, Jidong
    Wei, Wei
    Han, Runsheng
    Xu, Danya
    Meng, Fan
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [32] Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models
    Khean, Vesal
    Kim, Chomyong
    Ryu, Sunjoo
    Khan, Awais
    Hong, Min Kyung
    Kim, Eun Young
    Kim, Joungmin
    Nam, Yunyoung
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (01): : 773 - 787
  • [33] Suspicious Human Activity Recognition From Surveillance Videos Using Deep Learning
    Mohamed Zaidi, Monji
    Avelino Sampedro, Gabriel
    Almadhor, Ahmad
    Alsubai, Shtwai
    Al Hejaili, Abdullah
    Gregus, Michal
    Abbas, Sidra
    IEEE ACCESS, 2024, 12 : 105497 - 105510
  • [34] Reconstruction of significant wave height distribution from sparse buoy data by using deep learning
    Duan, Wenyang
    Zhang, Lu
    Cao, Debin
    Sun, Xuehai
    Zhang, Xinyuan
    Huang, Limin
    COASTAL ENGINEERING, 2024, 194
  • [35] Spatial-temporal wave height forecast using deep learning and public reanalysis dataset
    Ti, Zilong
    Song, Yubing
    Deng, Xiaowei
    APPLIED ENERGY, 2022, 326
  • [36] DEEP LEARNING-BASED CLASSIFICATION OF SEISMIC EVENTS USING WAVEFORM DATA
    Vasti, Manka
    Dev, Amita
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2025, 42 (01): : 17 - 45
  • [37] Traffic Scene Analysis and Classification using Deep Learning
    Dorrani, Z.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2024, 37 (03): : 496 - 502
  • [38] Modulation Classification for Overlapped Signals Using Deep Learning
    Jajoo, Gaurav
    Singh, Prem
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 3839 - 3851
  • [39] Enhancing diabetic retinopathy classification using deep learning
    Alwakid, Ghadah
    Gouda, Walaa
    Humayun, Mamoona
    Jhanjhi, N. Z.
    DIGITAL HEALTH, 2023, 9
  • [40] On OCT Image Classification via Deep Learning
    Wang, Depeng
    Wang, Liejun
    IEEE PHOTONICS JOURNAL, 2019, 11 (05):