Umklapp scattering in the one-dimensional Hubbard model

被引:1
作者
Liu, Tong [1 ,2 ]
Wang, Kang [1 ,2 ]
Chi, Runze [1 ,2 ]
Liu, Yang [1 ,2 ]
Liao, Haijun [1 ,3 ]
Xiang, T. [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[4] Beijing Acad Quantum Informat Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
RENORMALIZATION-GROUP; MOTT TRANSITION; INSULATOR; GAP;
D O I
10.1103/PhysRevB.108.125134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The one-dimensional Mott metal-insulator transition is a typical strong correlation effect triggered by the Umklapp scattering. However, in a physical system, the Umklapp scattering coexists with the normal scattering, including both forward and backward scattering, which conserves the total momentum of scattered electrons. Therefore, it is not easy to quantify the contribution of the Umklapp scattering in a Mott metal-insulator transition. To resolve this difficulty, we propose to explore these scattering processes separately. We study the contribution of each scattering process in the one-dimensional Hubbard model using the momentum-space density-matrix renormalization group (kDMRG) and bosonization methods. Our kDMRG calculation confirms that the Mott charge gap results from the Umklapp scattering, but the normal scattering processes strongly renormalize its value. Furthermore, we present a scaling analysis of the Mott charge gap in the bosonization theory and show that the interplay between the Umklapp and forward scattering dictates the charge dynamics in the half-filled Hubbard model.
引用
收藏
页数:7
相关论文
共 42 条
[1]   Density-matrix renormalization-group study of the spin gap in a one-dimensional Hubbard model: Effect of the distant transfer and exchange coupling [J].
Arita, R ;
Kuroki, K ;
Aoki, H ;
Fabrizio, M .
PHYSICAL REVIEW B, 1998, 57 (17) :10324-10327
[2]   GENERALIZED HARTREE-FOCK THEORY AND THE HUBBARD-MODEL [J].
BACH, V ;
LIEB, EH ;
SOLOVEJ, JP .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) :3-89
[3]   Weak-coupling phase diagram of the two-chain Hubbard model [J].
Balents, L ;
Fisher, MPA .
PHYSICAL REVIEW B, 1996, 53 (18) :12133-12141
[4]   Hidden charge-2e boson:: Experimental consequences for doped Mott insulators [J].
Choy, Ting-Pong ;
Leigh, Robert G. ;
Phillips, Philip .
PHYSICAL REVIEW B, 2008, 77 (10)
[5]   DMRG study of ferromagnetism in a one-dimensional Hubbard model [J].
Daul, S ;
Noack, RM .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 103 (02) :293-295
[6]  
de Boer J.H., 1937, P PHYS SOC LONDON SE, V49, P59, DOI DOI 10.1088/0959-5309/49/4S/307
[7]  
Ding GH, 2003, COMMUN THEOR PHYS, V39, P105
[8]   Entanglement structure of the Hubbard model in momentum space [J].
Ehlers, G. ;
Solyom, J. ;
Legeza, O. ;
Noack, R. M. .
PHYSICAL REVIEW B, 2015, 92 (23)
[9]  
Emery V.J., 1979, Highly Conducting One-Dimensional Solids
[10]   STRONG-COUPLING FIELD-THEORY AND SOLITON DOPING IN A ONE-DIMENSIONAL COPPER-OXIDE MODEL [J].
EMERY, VJ .
PHYSICAL REVIEW LETTERS, 1990, 65 (08) :1076-1079