Experimental Study on Macroscopic Mechanical Characteristics and Microscopic Pore Structure Evolution of Soil-Rock Mixture under Repeated Freeze-Thaw Cycles

被引:8
|
作者
Deng, Hongwei [1 ]
Zhao, Bokun [1 ]
Xiao, Yigai [1 ,2 ]
Tian, Guanglin [1 ]
机构
[1] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
[2] Sinosteel Maanshan Mine Res Inst Co Ltd, Maanshan 243000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 20期
关键词
soil-rock mixture; electrochemical impedance spectrometry; similarity; mechanical properties; crack propagation; DAMAGE CHARACTERISTICS; STRENGTH; SANDSTONE; MODEL;
D O I
10.3390/app132011504
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The response characteristics of the mesostructure and macro-characteristics of the soil-rock mixture under repeated freeze-thaw action have an important influence on the safety and stability of the dump slope in low-temperature environments. In order to further understand the multi-scale response behavior of a soil-rock mixture under freeze-thaw cycles, this paper carried out indoor freeze-thaw cycles, uniaxial compression, and electrochemical impedance spectroscopy tests on a soil-rock mixture taken from a graphite mine dump in Jixi City, Heilongjiang Province, China. Combined with the simulation calculation of discrete element numerical software (PFC2D 7.0), the effects of freeze-thaw cycling on electrochemical impedance spectrometry (EIS) mesoscopic parameters, uniaxial compressive strength, and crack propagation of soil-rock mixtures were analyzed. The intrinsic relationship between mesoparameters and macroscopic mechanical properties was established. The results showed that as the number of freeze-thaw cycles increases from 0 to 15, the mesopores inside the soil-rock mixture gradually increase, and the angular similarity of distribution characteristics increases by 5.25%. The uniaxial compressive strength and the peak secant modulus increase exponentially with the increase in the number of freeze-thaw cycles, the uniaxial compressive strength decreases by 47.62%, and the peak secant modulus decreases by 75.87%. The peak strain and pore compaction stage showed an exponential increase and an increasing trend, respectively, and the peak strain increased from 2.115% to 4.608%. The failure mode was basically similar in different cycles; the failure cracks extended from the corners to the middle and lower parts before the failure finally occurred. The types of failure cracks were mainly tensile cracks, followed by tensile shear cracks and the fewest compression shear cracks. The similarity and uniaxial compressive strength conformed to a good linear relationship with the number of freeze-thaw cycles, with the uniaxial compressive strength decreasing linearly with the increase in similarity.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Analysis of Microscopic Pore Characteristics and Macroscopic Energy Evolution of Rock Materials under Freeze-Thaw Cycle Conditions
    Xiao, Yigai
    Deng, Hongwei
    Tian, Guanglin
    Yu, Songtao
    MATHEMATICS, 2023, 11 (03)
  • [2] Experimental and Modeling of Residual Deformation of Soil-Rock Mixture under Freeze-Thaw Cycles
    Wang, Chao
    Chen, Jing
    Chen, Lilei
    Sun, Yue
    Xie, Zelei
    Yin, Guoan
    Liu, Minghao
    Li, Anyuan
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [3] Pore evolution and shear characteristics of a soil-rock mixture upon freeze-thaw cycling
    Tang, LiYun
    Sun, ShiYuan
    Zheng, JianGuo
    Jin, Long
    Yu, YongTang
    Luo, Tao
    Duan, Xu
    RESEARCH IN COLD AND ARID REGIONS, 2023, 15 (04) : 179 - 190
  • [4] Experimental investigations on the shear strength and creep properties of soil-rock mixture under freeze-thaw cycles
    Qiu, Peiyong
    Tang, Liyun
    Zheng, Jianguo
    Wang, Weibing
    Li, Yongqiang
    Li, Guoyu
    Jin, Long
    Yu, Yongtang
    Duan, Xu
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2024, 217
  • [5] Study on the evolution of microscopic pore structure of sandstone under freeze-thaw cycles
    Zhang, Junyue
    Wang, Guibin
    Liu, Huandui
    Yang, Mengmeng
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2024, 217
  • [6] Damage mechanism of soil-rock mixture after freeze-thaw cycles
    Zhou Zhong
    Xing Kai
    Yang Hao
    Wang Hao
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (01) : 13 - 24
  • [7] Mechanical Properties of Soil-Rock Mixtures with Varying Rock Content Under Freeze-Thaw Cycles
    Wan, Lijun
    Zhao, Mai
    Geng, Yuanming
    Zhang, Zixuan
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2025, 43 (02)
  • [8] Experimental studies on the pore structure and mechanical properties of anhydrite rock under freeze-thaw cycles
    Hou, Chao
    Jin, Xiaoguang
    He, Jie
    Li, Hanlin
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2022, 14 (03) : 781 - 797
  • [9] Experimental Study on Mechanical Properties and Pore Structure Deterioration of Concrete under Freeze-Thaw Cycles
    Zhang, Kai
    Zhou, Jing
    Yin, Zhigang
    MATERIALS, 2021, 14 (21)
  • [10] Orthogonal experimental study of soil-rock mixtures under the freeze-thaw cycle environment
    Zhou, Zhong
    Li, Fan
    Yang, Hao
    Gao, Wenyuan
    Miao, Linwu
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2021, 22 (11) : 1376 - 1388