Bridging live-cell imaging and next-generation cancer treatment

被引:21
作者
Alieva, Maria [1 ,2 ]
Wezenaar, Amber K. L. [1 ,3 ]
Wehrens, Ellen J. [1 ,3 ]
Rios, Anne C. [1 ,3 ]
机构
[1] Princess Maxima Ctr Pediat Oncol, Utrecht, Netherlands
[2] CSIC, UAM, Inst Invest Biomed Sols Morreale IIBM, Madrid, Spain
[3] Oncode Inst, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
T-CELLS; INTRATUMORAL HETEROGENEITY; IFN-GAMMA; RNA-SEQ; ORGANOIDS; DYNAMICS; REVEALS; RESISTANCE; MICROSCOPY; MELANOMA;
D O I
10.1038/s41568-023-00610-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
By providing spatial, molecular and morphological data over time, live-cell imaging can provide a deeper understanding of the cellular and signalling events that determine cancer response to treatment. Understanding this dynamic response has the potential to enhance clinical outcome by identifying biomarkers or actionable targets to improve therapeutic efficacy. Here, we review recent applications of live-cell imaging for uncovering both tumour heterogeneity in treatment response and the mode of action of cancer-targeting drugs. Given the increasing uses of T cell therapies, we discuss the unique opportunity of time-lapse imaging for capturing the interactivity and motility of immunotherapies. Although traditionally limited in the number of molecular features captured, novel developments in multidimensional imaging and multi-omics data integration offer strategies to connect single-cell dynamics to molecular phenotypes. We review the effect of these recent technological advances on our understanding of the cellular dynamics of tumour targeting and discuss their implication for next-generation precision medicine. Live-cell imaging can provide spatial, morphological and molecular understanding of cancer response to treatment. Here, Alieva et al. review its recent application for uncovering drug mode of action and tumour heterogeneity in response to treatment and discuss its application for next-generation precision medicine.
引用
收藏
页码:731 / 745
页数:15
相关论文
共 158 条
  • [11] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    [J]. NATURE METHODS, 2019, 16 (12) : 1226 - 1232
  • [12] The drug-induced phenotypic landscape of colorectal cancer organoids
    Betge, Johannes
    Rindtorff, Niklas
    Sauer, Jan
    Rauscher, Benedikt
    Dingert, Clara
    Gaitantzi, Haristi
    Herweck, Frank
    Srour-Mhanna, Kauthar
    Miersch, Thilo
    Valentini, Erica
    Boonekamp, Kim E.
    Hauber, Veronika
    Gutting, Tobias
    Frank, Larissa
    Belle, Sebastian
    Gaiser, Timo
    Buchholz, Inga
    Jesenofsky, Ralf
    Haertel, Nicolai
    Zhan, Tianzuo
    Fischer, Bernd
    Breitkopf-Heinlein, Katja
    Burgermeister, Elke
    Ebert, Matthias P.
    Boutros, Michael
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [13] MRT letter: High speed scanning has the potential to increase fluorescence yield and to reduce photobleaching
    Borlinghaus, Rolf T.
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2006, 69 (09) : 689 - 692
  • [14] A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity
    Boulch, Morgane
    Cazaux, Marine
    Loe-Mie, Yann
    Thibaut, Ronan
    Corre, Beatrice
    Lemaitre, Fabrice
    Grandjean, Capucine L.
    Garcia, Zacarias
    Bousso, Philippe
    [J]. SCIENCE IMMUNOLOGY, 2021, 6 (57)
  • [15] Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes
    Bray, Mark-Anthony
    Singh, Shantanu
    Han, Han
    Davis, Chadwick T.
    Borgeson, Blake
    Hartland, Cathy
    Kost-Alimova, Maria
    Gustafsdottir, Sigrun M.
    Gibson, Christopher C.
    Carpenter, Anne E.
    [J]. NATURE PROTOCOLS, 2016, 11 (09) : 1757 - 1774
  • [16] Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming
    Buck, Michael D.
    O'Sullivan, David
    Geltink, Ramon I. Klein
    Curtis, Jonathan D.
    Chang, Chih-Hao
    Sanin, David E.
    Qiu, Jing
    Kretz, Oliver
    Braas, Daniel
    van der Windt, Gerritje J. W.
    Chen, Qiongyu
    Huang, Stanley Ching-Cheng
    O'Neill, Christina M.
    Edelson, Brian T.
    Pearce, Edward J.
    Sesaki, Hiromi
    Huber, Tobias B.
    Rambold, Angelika S.
    Pearce, Erika L.
    [J]. CELL, 2016, 166 (01) : 63 - 76
  • [17] Prospective identification of hematopoietic lineage choice by deep learning
    Buggenthin, Felix
    Buettner, Florian
    Hoppe, Philipp S.
    Endele, Max
    Kroiss, Manuel
    Strasser, Michael
    Schwarzfischer, Michael
    Loeffler, Dirk
    Kokkaliaris, Konstantinos D.
    Hilsenbeck, Oliver
    Schroeder, Timm
    Theis, Fabian J.
    Marr, Carsten
    [J]. NATURE METHODS, 2017, 14 (04) : 403 - +
  • [18] Density-Dependent Migration Characteristics of Cancer Cells Driven by Pseudopod Interaction
    Burger, Gerhard A.
    Van De Water, Bob
    Le Devedec, Sylvia E.
    Beltman, Joost B.
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [19] Recursive Deep Prior Video: A super resolution algorithm for time-lapse microscopy of organ-on-chip experiments
    Cascarano, Pasquale
    Comes, Maria Colomba
    Mencattini, Arianna
    Parrini, Maria Carla
    Piccolomini, Elena Loli
    Martinelli, Eugenio
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 72
  • [20] Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity
    Cazaux, Marine
    Grandjean, Capucine L.
    Lemaitre, Fabrice
    Garcia, Zacarias
    Beck, Richard J.
    Milo, Idan
    Postat, Jeremy
    Beltman, Joost B.
    Cheadle, Eleanor J.
    Bousso, Philippe
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2019, 216 (05) : 1038 - 1049