Bridging live-cell imaging and next-generation cancer treatment

被引:32
作者
Alieva, Maria [1 ,2 ]
Wezenaar, Amber K. L. [1 ,3 ]
Wehrens, Ellen J. [1 ,3 ]
Rios, Anne C. [1 ,3 ]
机构
[1] Princess Maxima Ctr Pediat Oncol, Utrecht, Netherlands
[2] CSIC, UAM, Inst Invest Biomed Sols Morreale IIBM, Madrid, Spain
[3] Oncode Inst, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
T-CELLS; INTRATUMORAL HETEROGENEITY; IFN-GAMMA; RNA-SEQ; ORGANOIDS; DYNAMICS; REVEALS; RESISTANCE; MICROSCOPY; MELANOMA;
D O I
10.1038/s41568-023-00610-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
By providing spatial, molecular and morphological data over time, live-cell imaging can provide a deeper understanding of the cellular and signalling events that determine cancer response to treatment. Understanding this dynamic response has the potential to enhance clinical outcome by identifying biomarkers or actionable targets to improve therapeutic efficacy. Here, we review recent applications of live-cell imaging for uncovering both tumour heterogeneity in treatment response and the mode of action of cancer-targeting drugs. Given the increasing uses of T cell therapies, we discuss the unique opportunity of time-lapse imaging for capturing the interactivity and motility of immunotherapies. Although traditionally limited in the number of molecular features captured, novel developments in multidimensional imaging and multi-omics data integration offer strategies to connect single-cell dynamics to molecular phenotypes. We review the effect of these recent technological advances on our understanding of the cellular dynamics of tumour targeting and discuss their implication for next-generation precision medicine. Live-cell imaging can provide spatial, morphological and molecular understanding of cancer response to treatment. Here, Alieva et al. review its recent application for uncovering drug mode of action and tumour heterogeneity in response to treatment and discuss its application for next-generation precision medicine.
引用
收藏
页码:731 / 745
页数:15
相关论文
共 158 条
[11]   ilastik: interactive machine learning for (bio) image analysis [J].
Berg, Stuart ;
Kutra, Dominik ;
Kroeger, Thorben ;
Straehle, Christoph N. ;
Kausler, Bernhard X. ;
Haubold, Carsten ;
Schiegg, Martin ;
Ales, Janez ;
Beier, Thorsten ;
Rudy, Markus ;
Eren, Kemal ;
Cervantes, Jaime I. ;
Xu, Buote ;
Beuttenmueller, Fynn ;
Wolny, Adrian ;
Zhang, Chong ;
Koethe, Ullrich ;
Hamprecht, Fred A. ;
Kreshuk, Anna .
NATURE METHODS, 2019, 16 (12) :1226-1232
[12]   The drug-induced phenotypic landscape of colorectal cancer organoids [J].
Betge, Johannes ;
Rindtorff, Niklas ;
Sauer, Jan ;
Rauscher, Benedikt ;
Dingert, Clara ;
Gaitantzi, Haristi ;
Herweck, Frank ;
Srour-Mhanna, Kauthar ;
Miersch, Thilo ;
Valentini, Erica ;
Boonekamp, Kim E. ;
Hauber, Veronika ;
Gutting, Tobias ;
Frank, Larissa ;
Belle, Sebastian ;
Gaiser, Timo ;
Buchholz, Inga ;
Jesenofsky, Ralf ;
Haertel, Nicolai ;
Zhan, Tianzuo ;
Fischer, Bernd ;
Breitkopf-Heinlein, Katja ;
Burgermeister, Elke ;
Ebert, Matthias P. ;
Boutros, Michael .
NATURE COMMUNICATIONS, 2022, 13 (01)
[13]   MRT letter: High speed scanning has the potential to increase fluorescence yield and to reduce photobleaching [J].
Borlinghaus, Rolf T. .
MICROSCOPY RESEARCH AND TECHNIQUE, 2006, 69 (09) :689-692
[14]   A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity [J].
Boulch, Morgane ;
Cazaux, Marine ;
Loe-Mie, Yann ;
Thibaut, Ronan ;
Corre, Beatrice ;
Lemaitre, Fabrice ;
Grandjean, Capucine L. ;
Garcia, Zacarias ;
Bousso, Philippe .
SCIENCE IMMUNOLOGY, 2021, 6 (57)
[15]   Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes [J].
Bray, Mark-Anthony ;
Singh, Shantanu ;
Han, Han ;
Davis, Chadwick T. ;
Borgeson, Blake ;
Hartland, Cathy ;
Kost-Alimova, Maria ;
Gustafsdottir, Sigrun M. ;
Gibson, Christopher C. ;
Carpenter, Anne E. .
NATURE PROTOCOLS, 2016, 11 (09) :1757-1774
[16]   Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming [J].
Buck, Michael D. ;
O'Sullivan, David ;
Geltink, Ramon I. Klein ;
Curtis, Jonathan D. ;
Chang, Chih-Hao ;
Sanin, David E. ;
Qiu, Jing ;
Kretz, Oliver ;
Braas, Daniel ;
van der Windt, Gerritje J. W. ;
Chen, Qiongyu ;
Huang, Stanley Ching-Cheng ;
O'Neill, Christina M. ;
Edelson, Brian T. ;
Pearce, Edward J. ;
Sesaki, Hiromi ;
Huber, Tobias B. ;
Rambold, Angelika S. ;
Pearce, Erika L. .
CELL, 2016, 166 (01) :63-76
[17]   Prospective identification of hematopoietic lineage choice by deep learning [J].
Buggenthin, Felix ;
Buettner, Florian ;
Hoppe, Philipp S. ;
Endele, Max ;
Kroiss, Manuel ;
Strasser, Michael ;
Schwarzfischer, Michael ;
Loeffler, Dirk ;
Kokkaliaris, Konstantinos D. ;
Hilsenbeck, Oliver ;
Schroeder, Timm ;
Theis, Fabian J. ;
Marr, Carsten .
NATURE METHODS, 2017, 14 (04) :403-+
[18]   Density-Dependent Migration Characteristics of Cancer Cells Driven by Pseudopod Interaction [J].
Burger, Gerhard A. ;
Van De Water, Bob ;
Le Devedec, Sylvia E. ;
Beltman, Joost B. .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
[19]   Recursive Deep Prior Video: A super resolution algorithm for time-lapse microscopy of organ-on-chip experiments [J].
Cascarano, Pasquale ;
Comes, Maria Colomba ;
Mencattini, Arianna ;
Parrini, Maria Carla ;
Piccolomini, Elena Loli ;
Martinelli, Eugenio .
MEDICAL IMAGE ANALYSIS, 2021, 72
[20]   Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity [J].
Cazaux, Marine ;
Grandjean, Capucine L. ;
Lemaitre, Fabrice ;
Garcia, Zacarias ;
Beck, Richard J. ;
Milo, Idan ;
Postat, Jeremy ;
Beltman, Joost B. ;
Cheadle, Eleanor J. ;
Bousso, Philippe .
JOURNAL OF EXPERIMENTAL MEDICINE, 2019, 216 (05) :1038-1049