NLCUnet: Single-Image Super-Resolution Network with Hairline Details

被引:2
|
作者
Feng, Jiancong [1 ]
Wang, Yuan-Gen [1 ]
Xing, Fengchuang [1 ]
机构
[1] Guangzhou Univ, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Single-image super-resolution; Blur kernel estimation; Non-local attention; Semantic information;
D O I
10.1109/ICME55011.2023.00222
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pursuing the precise details of super-resolution images is challenging for single-image super-resolution tasks. This paper presents a single-image super-resolution network with hairline details (termed NLCUnet), including three core designs. Specifically, a non-local attention mechanism is first introduced to restore local pieces by learning from the whole image region. Then, we find that the blur kernel trained by the existing work is unnecessary. Based on this finding, we create a new network architecture by integrating depth-wise convolution with channel attention without the blur kernel estimation, resulting in a performance improvement instead. Finally, to make the cropped region contain as much semantic information as possible, we propose a random 64x64 crop inside the central 512x512 crop instead of a direct random crop inside the whole image of 2K size. Numerous experiments conducted on the benchmark DF2K dataset demonstrate that our NLCUnet performs better than the state-of-the-art in terms of the PSNR and SSIM metrics and yields visually favorable hairline details.
引用
收藏
页码:1277 / 1282
页数:6
相关论文
共 50 条
  • [1] Multilevel and Multiscale Network for Single-Image Super-Resolution
    Yang, Yong
    Zhang, Dongyang
    Huang, Shuying
    Wu, Jiajun
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1877 - 1881
  • [2] Rectified Binary Network for Single-Image Super-Resolution
    Xin, Jingwei
    Wang, Nannan
    Jiang, Xinrui
    Li, Jie
    Wang, Xiaoyu
    Gao, Xinbo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [3] Single-Image Super-Resolution: A Survey
    Yao, Tingting
    Luo, Yu
    Chen, Yantong
    Yang, Dongqiao
    Zhao, Lei
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 119 - 125
  • [4] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [5] Single-image super-resolution with multilevel residual attention network
    Qin, Ding
    Gu, Xiaodong
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (19): : 15615 - 15628
  • [6] Single-image super-resolution with multilevel residual attention network
    Ding Qin
    Xiaodong Gu
    Neural Computing and Applications, 2020, 32 : 15615 - 15628
  • [7] Residual Triplet Attention Network for Single-Image Super-Resolution
    Huang, Feng
    Wang, Zhifeng
    Wu, Jing
    Shen, Ying
    Chen, Liqiong
    ELECTRONICS, 2021, 10 (17)
  • [8] Anchored neighborhood deep network for single-image super-resolution
    Wuzhen Shi
    Shaohui Liu
    Feng Jiang
    Debin Zhao
    Zhihong Tian
    EURASIP Journal on Image and Video Processing, 2018
  • [9] Anchored neighborhood deep network for single-image super-resolution
    Shi, Wuzhen
    Liu, Shaohui
    Jiang, Feng
    Zhao, Debin
    Tian, Zhihong
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,
  • [10] Dual-aware transformer network for single-image super-resolution
    Luo, Zhonghua
    Wang, Li
    Wang, Fengzhou
    Ruan, Yinglan
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)